Frontiers in Biology

, Volume 5, Issue 2, pp 105–115 | Cite as

The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8

Review
  • 71 Downloads

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) is γ-2 herpesvirus with latency and lytic replication stages in its life-cycle. The viral replication and transcription activator (RTA) is the key protein for triggering KSHV lytic gene expression and replication from latency. In this review, we will discuss the gene expression program in KSHV lytic replication and latency, the regulation of the RTA expression, the RTA protein and the mechanisms that RTA utilizes to transactivate its target genes. We will focus on the RTA-mediated transactivation mechanisms, including DNA-binding, interacting with cellular co-factors and promoting repressor degradation.

Keywords

Kaposi’s sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) transactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amon W, Farrell P J (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol, 15(3), 149–156PubMedCrossRefGoogle Scholar
  2. AuCoin D P, Colletti K S, Cei S A, Papouskova I, Tarrant M, Pari G S (2004). Amplification of the Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (KbZIP). Virology, 318(2), 542–555PubMedCrossRefGoogle Scholar
  3. Bechtel J T, Winant R C, Ganem D (2005). Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol, 79(8), 4952–4964PubMedCrossRefGoogle Scholar
  4. Bellare B, Ganem D (2009). Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: An evolutionary adaptation that fine-tunes lytic reactivation. Cell Host & Microbe, 6(6), 570–575CrossRefGoogle Scholar
  5. Brown H J, Song M J, Deng H, Wu T T, Cheng G, Sun R (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol, 77(15), 8532–8540PubMedCrossRefGoogle Scholar
  6. Bu W, Carroll K D, Palmeri D, Lukac D M (2007). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta lytic switch protein functions as a tetramer. J Virol, 81(11), 5788–5806PubMedCrossRefGoogle Scholar
  7. Bu W, Palmeri D, Krishnan R, Marin R, Aris V M, Soteropoulos P, Lukac D M (2008). Identification of direct transcriptional targets of the Kaposi’s sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol, 82(21), 10709–10723PubMedCrossRefGoogle Scholar
  8. Burysek L, Pitha P M (2001). Latently expressed Human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J Virol, 75(5), 2345–2352PubMedCrossRefGoogle Scholar
  9. Byun H, Gwack Y, Hwang S, Choe J (2002). Kaposi’s sarcoma-associated herpesvirus open reading frame (ORF) 50 transactivates K8 and ORF57 promoters via heterogeneous response elements. Mol Cells, 14(2), 185–191PubMedGoogle Scholar
  10. Cai Q, Lan K, Verma S C, Si H, Lin D, Robertson E S (2006a). Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol, 80(16), 7965–7975PubMedCrossRefGoogle Scholar
  11. Cai Q L, Knight J S, Verma S C, Zald P, Robertson E S (2006b). EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog, 2(10), e116PubMedCrossRefGoogle Scholar
  12. Cai X, Lu S, Zhang Z, Gonzalez C M, Damania B, Cullen B R (2005). Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A, 102(15), 5570–5575PubMedCrossRefGoogle Scholar
  13. Carroll K D, Khadim F, Spadavecchia S, Palmeri D, Lukac D M (2007). Direct interactions of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta protein with the cellular protein Octamer-1 and DNA are critical for specifying transactivation of a delayed-early promoter and stimulating viral reactivation. J Virol, 81(16), 8451–8467PubMedCrossRefGoogle Scholar
  14. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem, 257(13), 7847–7851PubMedGoogle Scholar
  15. Cesarman E, Chang Y, Moore P S, Said J W, Knowles D M (1995a). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. New Engl J Med, 332(18), 1186–1191PubMedCrossRefGoogle Scholar
  16. Cesarman E, Moore P S, Rao P H, Inghirami G, Knowles D M, Chang Y (1995b). In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood, 86(7), 2708–2714PubMedGoogle Scholar
  17. Chang J, Ganem D (2000). On the control of late gene expression in Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8). J Gen Virol, 81(Pt 8), 2039–2047PubMedGoogle Scholar
  18. Chang J, Renne R, Dittmer D, Ganem D (2000). Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology, 266(1), 17–25.PubMedCrossRefGoogle Scholar
  19. Chang M, Brown H J, Collado-Hidalgo A, Arevalo J M, Galic Z, Symensma T L, Tanaka L, Deng H, Zack J A, Sun R, Cole S W (2005). beta-Adrenoreceptors reactivate Kaposi’s sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol, 79(21), 13538–13547PubMedCrossRefGoogle Scholar
  20. Chang P J, Miller G (2004). Autoregulation of DNA binding and protein stability of Kaposi’s sarcoma-associated herpesvirus ORF50 protein. J Virol, 78(19), 10657–10673PubMedCrossRefGoogle Scholar
  21. Chang P J, Shedd D, Gradoville L, Cho M S, Chen LW, Chang J, Miller G (2002). Open reading frame 50 protein of Kaposi’s sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol, 76(7), 3168–3178PubMedCrossRefGoogle Scholar
  22. Chang Y, Cesarman E, Pessin M S, Lee F, Culpepper J, Knowles D M, Moore P S (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266(5192), 1865–1869PubMedCrossRefGoogle Scholar
  23. Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001). Activation of latent Kaposi’s sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A, 98(7), 4119–4124PubMedCrossRefGoogle Scholar
  24. Chen J, Ueda K, Sakakibara S, Okuno T, Yamanishi K (2000). Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol, 74(18), 8623–8634PubMedCrossRefGoogle Scholar
  25. Chen J, Ye F, Xie J, Kuhne K, Gao S J (2009). Genome-wide identification of binding sites for Kaposi’s sarcoma-associated herpesvirus lytic switch protein, RTA. Virology, 386(2), 290–302PubMedCrossRefGoogle Scholar
  26. Cho H J, Yu F, Sun R, Lee D, Song M J (2008). Lytic induction of Kaposi’s sarcoma-associated herpesvirus in primary effusion lymphoma cells with natural products identified by a cell-based fluorescence moderate-throughput screening. Arch Virol, 153(8), 1517–1525PubMedCrossRefGoogle Scholar
  27. Cohrs R J, Gilden D H (2001). Human herpesvirus latency. Brain Pathol, 11(4), 465–474PubMedCrossRefGoogle Scholar
  28. Cotter M A 2nd, Robertson E S (1999). The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology, 264(2), 254–264PubMedCrossRefGoogle Scholar
  29. Curreli F, Friedman-Kien A E, Flore O (2005). Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Invest, 115(3), 642–652PubMedGoogle Scholar
  30. Davis D A, Rinderknecht A S, Zoeteweij J P, Aoki Y, Read-Connole E L, Tosato G, Blauvelt A, Yarchoan R (2001). Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood, 97(10), 3244–3250PubMedCrossRefGoogle Scholar
  31. Deng H, Chu J T, Rettig M B, Martinez-Maza O, Sun R (2002a). Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood, 100(5), 1919–1921PubMedCrossRefGoogle Scholar
  32. Deng H, Song M J, Chu J T, Sun R (2002b). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol, 76(16), 8252–8264PubMedCrossRefGoogle Scholar
  33. Deng H, Young A, Sun R (2000). Auto-activation of the rta gene of human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus. J Gen Virol, 81(Pt 12), 3043–3048PubMedGoogle Scholar
  34. DeWire S M, Damania B (2005). The Latency-Associated Nuclear Antigen of Rhesus Monkey Rhadinovirus Inhibits Viral Replication through Repression of Orf50/Rta Transcriptional Activation. J Virol, 79(5), 3127–3138PubMedCrossRefGoogle Scholar
  35. Di Bartolo D L, Hyjek E, Keller S, Guasparri I, Deng H, Sun R, Chadburn A, Knowles D M, Cesarman E (2009). Role of defective Oct-2 and OCA-B expression in immunoglobulin production and Kaposi’s sarcoma-associated herpesvirus lytic reactivation in primary effusion lymphoma. J Virol, 83(9), 4308–4315PubMedCrossRefGoogle Scholar
  36. Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D (1998). A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol, 72(10), 8309–8315PubMedGoogle Scholar
  37. Dourmishev L A, Dourmishev A L, Palmeri D, Schwartz R A, Lukac D M (2003). Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev, 67(2), 175–212PubMedCrossRefGoogle Scholar
  38. Duan W, Wang S, Liu S, Wood C (2001). Characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 ORF57 promoter. Arch Virol, 146(2), 403–413PubMedCrossRefGoogle Scholar
  39. Everett R D (2000). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays, 22(8), 761–770PubMedCrossRefGoogle Scholar
  40. Friborg J Jr, Kong W, Hottiger MO, Nabel G J (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402(6764), 889–894PubMedGoogle Scholar
  41. Goedert J J (2000). The epidemiology of acquired immunodeficiency syndrome malignancies. Semin Oncol, 27(4), 390–401PubMedGoogle Scholar
  42. Gould F, Harrison S M, Hewitt E W, Whitehouse A (2009). Kaposi’s sarcoma-associated herpesvirus RTA promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway. J Virol, 83(13), 6727–6738PubMedCrossRefGoogle Scholar
  43. Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, Miller G (2000). Kaposi’s sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol, 74(13), 6207–6212PubMedCrossRefGoogle Scholar
  44. Gwack Y, Baek H J, Nakamura H, Lee S H, Meisterernst M, Roeder R G, Jung J U (2003a). Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi’s sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol, 23(6), 2055–2067PubMedCrossRefGoogle Scholar
  45. Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001). CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol, 75(4), 1909–1917PubMedCrossRefGoogle Scholar
  46. Gwack Y, Nakamura H, Lee S H, Souvlis J, Yustein J T, Gygi S, Kung H-J, Jung J U (2003b). Poly(ADP-Ribose)polymerase 1 and ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol, 23(22), 8282–8294PubMedCrossRefGoogle Scholar
  47. Haque M, Chen J, Ueda K, Mori Y, Nakano K, Hirata Y, Kanamori S, Uchiyama Y, Inagi R, Okuno T, Yamanishi K (2000). Identification and analysis of the K5 gene of Kaposi’s sarcoma-associated herpesvirus. J Virol, 74(6), 2867–2875PubMedCrossRefGoogle Scholar
  48. Haque M, Davis D A, Wang V, Widmer I, Yarchoan R (2003). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol, 77(12), 6761–6768PubMedCrossRefGoogle Scholar
  49. He Z, Liu Y, Liang D, Wang Z, Robertson E S, Lan K (2010). Cellular corepressor TLE2 inhibits replication-and-transcription-activator-mediated transactivation and lytic reactivation of Kaposi’s sarcoma-associated herpesvirus. J Virol, 84(4): 2047–2062PubMedCrossRefGoogle Scholar
  50. Izumiya Y, Ellison T J, Yeh E T, Jung J U, Luciw P A, Kung H J (2005). Kaposi’s sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol, 79(15), 9912–9925PubMedCrossRefGoogle Scholar
  51. Izumiya Y, Lin S F, Ellison T, Chen L Y, Izumiya C, Luciw P, Kung H J (2003). Kaposi’s sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J Virol, 77(2), 1441–1451PubMedCrossRefGoogle Scholar
  52. Jeong J, Papin J, Dittmer D (2001). Differential regulation of the overlapping Kaposi’s sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol, 75(4), 1798–1807PubMedCrossRefGoogle Scholar
  53. Kalejta R F, Shenk T (2003). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Nation Acad Sci, 100(6), 3263–3268CrossRefGoogle Scholar
  54. Katano H, Sato Y, Sata T (2001). Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer, 92(12), 3076–3084PubMedCrossRefGoogle Scholar
  55. Kedes D H, Lagunoff M, Renne R, Ganem D (1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus. J Clin Invest, 100(10), 2606–2610PubMedCrossRefGoogle Scholar
  56. Komatsu T, Barbera A J, Ballestas ME, Kaye KM (2001). The Kaposi’ s sarcoma-associated herpesvirus latency-associated nuclear antigen. Viral Immunol, 14(4), 311–317PubMedCrossRefGoogle Scholar
  57. Kwun H J, da Silva S R, Shah IM, Blake N, Moore P S, Chang Y (2007). Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol, 81(15), 8225–8235PubMedCrossRefGoogle Scholar
  58. Lan K, Kuppers D A, Robertson E S (2005). Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J Virol, 79(6), 3468–3478PubMedCrossRefGoogle Scholar
  59. Lan K, Kuppers D A, Verma S C, Robertson E S (2004). Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol, 78(12), 6585–6594PubMedCrossRefGoogle Scholar
  60. Lan K, Kuppers D A, Verma S C, Sharma N, Murakami M, Robertson E S (2005). Induction of Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol, 79(12), 7453–7465PubMedCrossRefGoogle Scholar
  61. Lee S, Deng H, Yu F, Melega W P, Damoiseaux R, Bradley K A, Sun R (2008). Regulation of Kaposi’s sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr, 48(5), 531–540PubMedCrossRefGoogle Scholar
  62. Liang Y, Chang J, Lynch S J, Lukac D M, Ganem D (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev, 16(15), 1977–1989PubMedCrossRefGoogle Scholar
  63. Liang Y, Ganem, D. (2003). Lytic but not latent infection by Kaposi’s sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A, 100(14), 8490–8495PubMedCrossRefGoogle Scholar
  64. Liang Y, Ganem D (2004). RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol, 78(13), 6818–6826PubMedCrossRefGoogle Scholar
  65. Liao W, Tang Y, Kuo Y L, Liu B Y, Xu C J, Giam C Z (2003a). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J Virol, 77(17), 9399–9411PubMedCrossRefGoogle Scholar
  66. Liao W, Tang Y, Lin S F, Kung H J, Giam C Z (2003b). K-bZIP of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) binds KSHV/HHV-8 Rta and represses Rta-mediated transactivation. J Virol, 77(6), 3809–3815PubMedCrossRefGoogle Scholar
  67. Lim C, Sohn H, Gwack Y, Choe J (2000). Latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptional activation activity. J Gen Virol, 81(Pt 11), 2645–2652PubMedGoogle Scholar
  68. Liu J, Martin H J, Liao G, Hayward S D (2007). The Kaposi sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol, 81(19), 10451–10459PubMedCrossRefGoogle Scholar
  69. Lu F, Day L, Lieberman P M (2005). Kaposi’s sarcoma-associated herpesvirus virion-induced transcription activation of the ORF50 immediate-early promoter. J Virol, 79(20), 13180–13185PubMedCrossRefGoogle Scholar
  70. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman P M (2003). Chromatin Remodeling of the Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Promoter Correlates with Reactivation from Latency. J Virol 77(21), 11425–11435PubMedCrossRefGoogle Scholar
  71. Lukac D M, Garibyan L, Kirshner J R, Palmeri D, Ganem D (2001). DNA binding by Kaposi’s sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J Virol, 75(15), 6786–6799PubMedCrossRefGoogle Scholar
  72. Lukac D M, Kirshner J R, Ganem D (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol, 73(11), 9348–9361PubMedGoogle Scholar
  73. Lukac D M, Renne R, Kirshner J R, Ganem D (1998). Reactivation of Kaposi’s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology, 252(2), 304–312PubMedCrossRefGoogle Scholar
  74. Marks P A, Miller T, Richon V M (2003). Histone deacetylases. Curr Opin Pharmacol, 3(4), 344–351PubMedCrossRefGoogle Scholar
  75. Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson A C (2005). Activation of the Kaposi’s sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol, 79(13), 8493–8505PubMedCrossRefGoogle Scholar
  76. Miller G, Rigsby M O, Heston L, Grogan E, Sun R, Metroka C, Levy J A, Gao S J, Chang Y, Moore P (1996). Antibodies to butyrate-inducible antigens of Kaposi’s sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med, 334(20), 1292–1297PubMedCrossRefGoogle Scholar
  77. Mumm J S, Kopan R (2000). Notch signaling: from the outside in. Dev Biol, 228(2), 151–165PubMedCrossRefGoogle Scholar
  78. Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal L J (2000). Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol, 16(3), 203–213PubMedCrossRefGoogle Scholar
  79. Persson L M, Wilson A C (2009). Wide-scale use of Notch-signaling factor CSL/RBP-J{kappa} in RTA-mediated KSHV lytic gene activation. J Virol. doi:10.1128/JVI.01301-09Google Scholar
  80. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser F A, van Dyk L F, Ho C K, Shuman S, Chien M, Russo J J, Ju J, Randall G, Lindenbach B D, Rice C M, Simon V, Ho D D, Zavolan M, Tuschl T (2005). Identification of microRNAs of the herpesvirus family. Nat Methods, 2(4), 269–276PubMedCrossRefGoogle Scholar
  81. Rainbow L, Platt G M, Simpson G R, Sarid R, Gao S J, Stoiber H, Herrington C S, Moore P S, Schulz T F (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol, 71(8), 5915–5921PubMedGoogle Scholar
  82. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996). Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med, 2(3), 342–346PubMedCrossRefGoogle Scholar
  83. Russo J J, Bohenzky R A, Chien M C, Chen J, Yan M, Maddalena D, Parry J P, Peruzzi D, Edelman I S, Chang Y, Moore P S (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A, 93(25), 14862–14867PubMedCrossRefGoogle Scholar
  84. Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999). A complex translational program generates multiple novel proteins from the latently expressedkaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol, 73(7), 5722–5730PubMedGoogle Scholar
  85. Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K (2001). Octamerbinding sequence is a key element for the autoregulation of Kaposi’s sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol, 75(15), 6894–6900PubMedCrossRefGoogle Scholar
  86. Samols M A, Hu J, Skalsky R L, Renne R (2005). Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol, 79(14), 9301–9305PubMedCrossRefGoogle Scholar
  87. Sarid R, Flore O, Bohenzky R A, Chang Y, Moore P S (1998). Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol, 72(2), 1005–1012PubMedGoogle Scholar
  88. Saveliev A, Zhu F, Yuan Y (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi’s sarcoma-associated herpesvirus. Virology, 299(2), 301–314PubMedCrossRefGoogle Scholar
  89. Schafer A, Lengenfelder D, Grillhosl C, Wieser C, Fleckenstein B, Ensser A (2003). The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J Virol, 77(10), 5911–5925PubMedCrossRefGoogle Scholar
  90. Si H, Robertson E S (2006). Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol, 80(2), 697–709PubMedCrossRefGoogle Scholar
  91. Skalsky R L, Hu J, Renne R (2007). Analysis of viral cis-elements conferring Kshv Episome partitioning and maintenance. J Virol, doi:10.1128/JVI.00842-07Google Scholar
  92. Song M J, Brown H J, Wu T T, Sun R (2001). Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus. J Virol, 75(7), 3129–3140PubMedCrossRefGoogle Scholar
  93. Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson R C, Carey M, Sun R (2004). The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol, 78(23), 12940–12950PubMedCrossRefGoogle Scholar
  94. Song M J, Li X, Brown H J, Sun R (2002). Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol, 76(10), 5000–5013PubMedCrossRefGoogle Scholar
  95. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay M F, Clauvel J P, Raphael M, Degos L. (1995). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood, 86(4), 1276–1280PubMedGoogle Scholar
  96. Staskus K A, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson D J, Ganem D, Haase A T (1997). Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol, 71(1), 715–719PubMedGoogle Scholar
  97. Staudt M R, Dittmer D P (2006). Promoter switching allows simultaneous transcription of LANA and K14/vGPCR of Kaposi’s sarcoma-associated herpesvirus. Virology, 350(1), 192–205PubMedCrossRefGoogle Scholar
  98. Sun R, Lin S F, Gradoville L, Yuan Y, Zhu F, Miller G (1998). A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A, 95(18), 10866–10871PubMedCrossRefGoogle Scholar
  99. Sun R, Lin S F, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999). Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol, 73(3), 2232–2242PubMedGoogle Scholar
  100. Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K (2002). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J Virol, 76(23), 12044–12054PubMedCrossRefGoogle Scholar
  101. Varthakavi V, Browning P J, Spearman P (1999). Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi’s sarcoma-associated herpesvirus. J Virol, 73(12), 10329–10338PubMedGoogle Scholar
  102. Verma S C, Choudhuri T, Kaul R, Robertson E S (2006). Latency-associated nuclear antigen (LANA) of Kaposi’s sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J Virol, 80(5), 2243–2256PubMedCrossRefGoogle Scholar
  103. Wang J, Zhang J, Zhang L, Harrington W Jr, West J T, Wood C (2005). Modulation of human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol, 79(4), 2420–2431PubMedCrossRefGoogle Scholar
  104. Wang S E, Wu F Y, Fujimuro M, Zong J, Hayward S D, Hayward G S (2003a). Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol, 77(1), 600–623PubMedCrossRefGoogle Scholar
  105. Wang S E, Wu F Y, Yu Y, Hayward G S (2003b). CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol, 77(17), 9590–9612PubMedCrossRefGoogle Scholar
  106. Wang Y, Li H, Chan M Y, Zhu F X, Lukac D M, Yuan Y (2004). Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol, 78(16), 8615–8629PubMedCrossRefGoogle Scholar
  107. Wang Y, Yuan Y (2007). Essential role of RBP-Jkappa in activation of the K8 delayed-early promoter of Kaposi’s sarcoma-associated herpesvirus by ORF50/RTA. Virology, 359(1), 19–27PubMedCrossRefGoogle Scholar
  108. Wen H J, Minhas V, Wood C (2009). Identification and characterization of a new Kaposi’s sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation. J Gen Virol, 90(Pt 4), 944–953PubMedCrossRefGoogle Scholar
  109. Wong E L, Damania B (2006). Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus K15 gene. J Virol, 80(3), 1385–1392PubMedCrossRefGoogle Scholar
  110. Wu J, Grunstein M (2000). 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci, 25(12), 619–623PubMedCrossRefGoogle Scholar
  111. Wu T T, Usherwood E J, Stewart J P, Nash A A, Sun R (2000). Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol, 74(8), 3659–3667PubMedCrossRefGoogle Scholar
  112. Xie J, Ajibade A O, Ye F, Kuhne K, Gao S J (2008). Reactivation of Kaposi’s sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology, 371(1), 139–154PubMedCrossRefGoogle Scholar
  113. Xu Y, AuCoin D P, Huete A R, Cei S A, Hanson L J, Pari G S (2005). A Kaposi’s sarcoma-associated herpesvirus/Human herpesvirus 8 ORF50 deletion mutant Is defective for reactivation of latent virus and DNA replication. J Virol, 79(6), 3479–3487PubMedCrossRefGoogle Scholar
  114. Yada K, Do E, Sakakibara S, Ohsaki E, Ito E, Watanabe S, Ueda K (2006). KSHV RTA induces a transcriptional repressor, HEY1 that represses rta promoter. Biochem Biophys Res Commun, 345(1), 410–418PubMedCrossRefGoogle Scholar
  115. Yang Z, Wen H J, Minhas V, Wood C (2009). The zinc finger DNA-binding domain of K-RBP plays an important role in regulating Kaposi’s sarcoma-associated herpesvirus RTA-mediated gene expression. Virology, 391(2), 221–231PubMedCrossRefGoogle Scholar
  116. Yang Z, Wood C (2007). The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi’s sarcoma-associated herpesvirus. J Virol, 81(12), 6294–6306PubMedCrossRefGoogle Scholar
  117. Yang Z, Yan Z, Wood C (2008). Kaposi’s sarcoma-associated herpesvirus transactivator RTA promotes degradation of the repressors to regulate viral lytic replication. J Virol, 82(7), 3590–3603PubMedCrossRefGoogle Scholar
  118. Ye J, Gradoville L, Daigle D, Miller G (2007). De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi’s sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol, 81(17), 9279–9291PubMedCrossRefGoogle Scholar
  119. Yu F, Harada J N, Brown H J, Deng H, Song M J, Wu T T, Kato-Stankiewicz J, Nelson C G, Vieira J, Tamanoi F, Chanda S K, Sun R (2007). Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog, 3(3), e44PubMedCrossRefGoogle Scholar
  120. Yu Y, Wang S E, Hayward G S (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity, 22(1), 59–70PubMedCrossRefGoogle Scholar
  121. Zhang J, Wang J, Wood C, Xu D, Zhang L (2005). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol, 79(9), 5640–5652PubMedCrossRefGoogle Scholar
  122. Zhang L, Chiu J, Lin J C (1998). Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol, 17(9), 735–742PubMedCrossRefGoogle Scholar
  123. Zhao J, Punj V, Matta H, Mazzacurati L, Schamus S, Yang Y, Yang T, Hong Y, Chaudhary P M (2007). K13 blocks KSHV lytic replication and deregulates vIL6 and hIL6 expression: A model of lytic replication induced clonal selection in viral oncogenesis. PLoS ONE, 2(10), e1067PubMedCrossRefGoogle Scholar
  124. Zhong W, Wang H, Herndier B, Ganem D (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A, 93(13), 6641–6646PubMedCrossRefGoogle Scholar
  125. Zhu F X, Cusano T, Yuan Y (1999). Identification of the immediate-early transcripts of Kaposi’s sarcoma-associated herpesvirus. J Virol, 73(7), 5556–5567PubMedGoogle Scholar
  126. Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004). Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci U S A, 101(24), 9073–9078PubMedCrossRefGoogle Scholar
  127. Ziegelbauer J, Grundhoff A, Ganem D (2006). Exploring the DNA binding interactions of the Kaposi’s sarcoma-associated herpesvirus lytic switch protein by selective amplification of bound sequences in vitro. J Virol, 80(6), 2958–2967PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Nebraska Center for Virology and School of Biological Sciences, 102C Morrison Life Sciences Research CenterUniversity of Nebraska-LincolnLincolnUSA
  2. 2.National Institutes of HealthBethesdaUSA

Personalised recommendations