Advertisement

Frontiers in Biology

, Volume 5, Issue 1, pp 48–58 | Cite as

Structural plasticity of dendritic spines

  • Shengxiang ZhangEmail author
  • Jiangbi Wang
  • Lei Wang
Review

Abstract

Dendritic spines are the major targets of excitatory synaptic input. They exist in a wide variety of shapes and sizes, from thin to mushroom-shaped to stubby. One of the striking characteristics of dendritic spines is their motile nature. Spines can undergo various structural modifications such as changes in density, shape, size, and motility. During development, spines are highly dynamic and many spines are formed and eliminated. As animals mature, most spines become stable and the vast majority of them can last throughout life. However, spine morphology can still undergo progressive changes. Structural dynamics of dendritic spines is thought to play important roles in synapse plasticity and information processing. Abnormal spine structures are often associated with malfunction of the nervous system.

Keywords

Dendritic Spine Spine Structure Spine Formation Spine Motility Structural Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann M, Matus A (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci, 6: 1194–1200PubMedGoogle Scholar
  2. Adams I, Jones D G (1982). Quantitative ultrastructural changes in rat cortical synapses during early-, mid- and late-adulthood. Brain Res, 239: 349–363PubMedGoogle Scholar
  3. Ashby M C, Maier S R, Nishimune A, Henley J M (2006). Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci, 26: 7046–7055PubMedGoogle Scholar
  4. Blomberg F, Cohen R S, Siekevitz P (1977). The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol, 74: 204–225PubMedGoogle Scholar
  5. Bloodgood B L, Sabatini B L (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310: 866–869PubMedGoogle Scholar
  6. Bloodgood B L, Giessel A J, Sabatini B L (2009). Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoSBiol, 7: e1000190Google Scholar
  7. Bonhoeffer T, Yuste R (2002). Spine motility. Phenomenology, mechanisms, and function. Neuron, 35: 1019–1027Google Scholar
  8. Bourne J N, Harris K M (2008). Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci, 31: 47–67PubMedGoogle Scholar
  9. Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H (2007). Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci, 27: 4101–4109PubMedGoogle Scholar
  10. Calabrese B, Wilson M S, Halpain S (2006). Development and regulation of dendritic spine synapses. Physiology (Bethesda), 21: 38–47Google Scholar
  11. Catsicas M, Allcorn S, Mobbs P (2001). Early activation of Ca(2 +)-permeable AMPA receptors reduces neurite outgrowth in embryonic chick retinal neurons. J Neurobiol, 49: 200–211PubMedGoogle Scholar
  12. Chicurel M E, Harris K M (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol, 325: 169–182PubMedGoogle Scholar
  13. Cingolani L A, Goda Y (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci, 9: 344–356PubMedGoogle Scholar
  14. Collin C, Miyaguchi K, Segal M (1997). Dendritic spine density and LTP induction in cultured hippocampal slices. J Neurophysiol, 77: 1614–1623PubMedGoogle Scholar
  15. Dailey M E, Smith S J (1996). The dynamics of dendritic structure in developing hippocampal slices. J Neurosci, 16: 2983–2994PubMedGoogle Scholar
  16. Deng J, Dunaevsky A (2005). Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons. Dev Biol, 277: 366–377PubMedGoogle Scholar
  17. Dunaevsky A, Mason C A (2003). Spine motility: a means towards an end? Trends Neurosci, 26: 155–160PubMedGoogle Scholar
  18. Dunaevsky A, Blazeski R, Yuste R, Mason C (2001). Spine motility with synaptic contact. Nat Neurosci, 4: 685–686PubMedGoogle Scholar
  19. Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999). Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A, 96: 13438–13443PubMedGoogle Scholar
  20. Engert F, Bonhoeffer T (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399: 66–70PubMedGoogle Scholar
  21. Ethell I M, Pasquale E B (2005). Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol, 75: 161–205PubMedGoogle Scholar
  22. Fiala J C, Spacek J, Harris KM (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev, 39: 29–54PubMedGoogle Scholar
  23. Fiala J C, Feinberg M, Popov V, Harris K M (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci, 18: 8900–8911PubMedGoogle Scholar
  24. Fischer M, Kaech S, Knutti D, Matus A (1998). Rapid actin-based plasticity in dendritic spines. Neuron, 20: 847–854PubMedGoogle Scholar
  25. Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000). Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci, 3: 887–894PubMedGoogle Scholar
  26. Fuhrmann M, Mitteregger G, Kretzschmar H, Herms J (2007). Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci, 27: 6224–6233PubMedGoogle Scholar
  27. Garner C C, Kindler S (1996). Synaptic proteins and the assembly of synaptic junctions. Trends Cell Biol, 6: 429–433PubMedGoogle Scholar
  28. Gomez T M, Robles E, Poo M, Spitzer N C (2001). Filopodial calcium transients promote substrate-dependent growth cone turning. Science, 291: 1983–1987PubMedGoogle Scholar
  29. Gray E G (1959a). Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature, 183: 1592–1593PubMedGoogle Scholar
  30. Gray E G (1959b). Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat, 93: 420–433PubMedGoogle Scholar
  31. Gray E G, Guillery R W (1963). A Note on the Dendritic Spine Apparatus. J Anat, 97: 389–392PubMedGoogle Scholar
  32. Grunditz A, Holbro N, Tian L, Zuo Y, Oertner TG (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J Neurosci, 28: 13457–13466PubMedGoogle Scholar
  33. Grutzendler J, Kasthuri N, Gan WB (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420: 812–816PubMedGoogle Scholar
  34. Guidetti P, Charles V, Chen E Y, Reddy P H, Kordower J H, WhetsellW O, Jr., Schwarcz R, Tagle D A (2001). Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol, 169: 340–350PubMedGoogle Scholar
  35. Harris K M (1999). Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol, 9: 343–348PubMedGoogle Scholar
  36. Harris K M, Stevens J K (1989). Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci, 9: 2982–2997PubMedGoogle Scholar
  37. Harris K M, Kater S B (1994). Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci, 17: 341–371PubMedGoogle Scholar
  38. Harris K M, Jensen F E, Tsao B (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci, 12: 2685–2705PubMedGoogle Scholar
  39. Hayashi Y, Majewska A K (2005). Dendritic spine geometry: functional implication and regulation. Neuron, 46: 529–532PubMedGoogle Scholar
  40. Hering H, Sheng M (2001). Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci, 2: 880–888PubMedGoogle Scholar
  41. Higley M J, Sabatini B L (2008). Calcium signaling in dendrites and spines: practical and functional considerations. Neuron, 59: 902–913PubMedGoogle Scholar
  42. Holcman D, Schuss Z, Korkotian E (2004). Calcium dynamics in dendritic spines and spine motility. Biophys J, 87: 81–91PubMedGoogle Scholar
  43. Holtmaat A, Wilbrecht L, Knott G W, Welker E, Svoboda K (2006). Experience-dependent and cell-type-specific spine growth in the neocortex. Nature, 441: 979–983PubMedGoogle Scholar
  44. Holtmaat A J, Trachtenberg J T, Wilbrecht L, Shepherd G M, Zhang X, Knott G W, Svoboda K (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45: 279–291PubMedGoogle Scholar
  45. Hoyt K R, Arden S R, Aizenman E, Reynolds I J (1998). Reverse Na +/Ca2 +exchange contributes to glutamate-induced intracellular Ca2 + concentration increases in cultured rat forebrain neurons. Mol Pharmacol, 53: 742–749PubMedGoogle Scholar
  46. Irwin S A, Galvez R, Greenough W T (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex, 10: 1038–1044PubMedGoogle Scholar
  47. Kirov S A, Sorra K E, Harris K M (1999). Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci, 19: 2876–2886PubMedGoogle Scholar
  48. Koch C, Zador A (1993). The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci, 13: 413–422PubMedGoogle Scholar
  49. Korkotian E, Segal M (1999). Bidirectional regulation of dendritic spine dimensions by glutamate receptors. Neuroreport, 10: 2875–2877PubMedGoogle Scholar
  50. Korkotian E, Segal M (2001a). Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci, 21: 6115–6124PubMedGoogle Scholar
  51. Korkotian E, Segal M (2001b). Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons. Neuron, 30: 751–758PubMedGoogle Scholar
  52. Lauer M, Senitz D (2006). Dendritic excrescences seem to characterize hippocampal CA3 pyramidal neurons in humans. J Neural Transm, 113: 1469–1475PubMedGoogle Scholar
  53. Lee W C, Huang H, Feng G, Sanes J R, Brown E N, So P T, Nedivi E (2006). Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol, 4: e29PubMedGoogle Scholar
  54. Lendvai B, Stern E A, Chen B, Svoboda K (2000). Experiencedependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature, 404: 876–881PubMedGoogle Scholar
  55. Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119: 873–887PubMedGoogle Scholar
  56. Lin B, Kramar E A, Bi X, Brucher FA, Gall CM, Lynch G (2005). Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci, 25: 2062–2069PubMedGoogle Scholar
  57. Lippman J, Dunaevsky A (2005). Dendritic spine morphogenesis and plasticity. J Neurobiol, 64: 47–57PubMedGoogle Scholar
  58. Lohmann C, Wong RO (2005). Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium, 37: 403–409PubMedGoogle Scholar
  59. Majewska A, Sur M (2003). Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc Natl Acad Sci U SA, 100: 16024–16029Google Scholar
  60. Majewska A, Tashiro A, Yuste R (2000). Regulation of spine calcium dynamics by rapid spine motility. J Neurosci, 20: 8262–8268PubMedGoogle Scholar
  61. Majewska A K, Newton J R, Sur M (2006). Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci, 26: 3021–3029PubMedGoogle Scholar
  62. Maletic-Savatic M, Malinow R, Svoboda K (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283: 1923–1927PubMedGoogle Scholar
  63. Marrs G S, Green S H, Dailey M E (2001). Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci, 4: 1006–1013PubMedGoogle Scholar
  64. Matsuzaki M, Honkura N, Ellis-Davies G C, Kasai H (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429: 761–766PubMedGoogle Scholar
  65. Matsuzaki M, Ellis-Davies G C, Nemoto T, Miyashita Y, Iino M, Kasai H (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci, 4: 1086–1092PubMedGoogle Scholar
  66. Matus A (2000). Actin-based plasticity in dendritic spines. Science, 290: 754–758PubMedGoogle Scholar
  67. Matus A, Brinkhaus H, Wagner U (2000). Actin dynamics in dendritic spines: a form of regulated plasticity at excitatory synapses. Hippocampus, 10: 555–560PubMedGoogle Scholar
  68. McKinney R A (2005). Physiological roles of spine motility: development, plasticity and disorders. Biochem Soc Trans, 33: 1299–1302PubMedGoogle Scholar
  69. McNeill T H, Brown S A, Rafols J A, Shoulson I (1988). Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res, 455: 148–152PubMedGoogle Scholar
  70. Mizrahi A, Katz L C (2003). Dendritic stability in the adult olfactory bulb. Nat Neurosci, 6: 1201–1207PubMedGoogle Scholar
  71. Mizrahi A, Crowley J C, Shtoyerman E, Katz LC (2004). Highresolution in vivo imaging of hippocampal dendrites and spines. J Neurosci, 24: 3147–3151PubMedGoogle Scholar
  72. Moser M B, Trommald M, Andersen P (1994). An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U SA, 91: 12673–12675Google Scholar
  73. Murphy T H, Li P, Betts K, Liu R (2008). Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci, 28: 1756–1772PubMedGoogle Scholar
  74. Nagerl U V, Eberhorn N, Cambridge S B, Bonhoeffer T (2004). Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron, 44: 759–767PubMedGoogle Scholar
  75. Niell C M, Meyer M P, Smith S J (2004). In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci, 7: 254–260PubMedGoogle Scholar
  76. Nimchinsky E A, Sabatini B L, Svoboda K (2002). Structure and function of dendritic spines. Annu Rev Physiol, 64: 313–353PubMedGoogle Scholar
  77. Nimchinsky E A, Yasuda R, Oertner T G, Svoboda K (2004). The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J Neurosci, 24: 2054–2064PubMedGoogle Scholar
  78. Noguchi J, Matsuzaki M, Ellis-Davies G C, Kasai H (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2 + signaling in dendrites. Neuron, 46: 609–622PubMedGoogle Scholar
  79. Norrholm S D, Bibb J A, Nestler E J, Ouimet C C, Taylor J R, Greengard P (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 116: 19–22PubMedGoogle Scholar
  80. Oertner T G, Matus A (2005). Calcium regulation of actin dynamics in dendritic spines. Cell Calcium, 37: 477–482PubMedGoogle Scholar
  81. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7: 1104–1112PubMedGoogle Scholar
  82. Oray S, Majewska A, Sur M (2006). Effects of synaptic activity on dendritic spine motility of developing cortical layer v pyramidal neurons. Cereb Cortex, 16: 730–741PubMedGoogle Scholar
  83. Passafaro M, Nakagawa T, Sala C, Sheng M (2003). Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature, 424: 677–681PubMedGoogle Scholar
  84. Peters A, Kaiserman-AbramofI R (1970). The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat, 127: 321–355PubMedGoogle Scholar
  85. Rakic P, Bourgeois J P, Eckenhoff M F, Zecevic N, Goldman-Rakic P S (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232: 232–235PubMedGoogle Scholar
  86. Ramon y Cajal S (1888). Estructura de los centros nervioso de las aves. Rev Trim Histol Norm Pat, 1: 1–10Google Scholar
  87. Ramon y Cajal S (1899a). La Textura del sistema nervioso del hombre y de los vertebrados. Moya: MadridGoogle Scholar
  88. Ramon y Cajal S (1899b). Reglas y consejos sobre investigacion biologica. Imprenta de Fontanet: MadridGoogle Scholar
  89. Rao A, Craig A M (2000). Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines. Hippocampus, 10: 527–541PubMedGoogle Scholar
  90. Robinson T E, Kolb B (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci, 11: 1598–1604PubMedGoogle Scholar
  91. Roelandse M, Matus A (2004). Hypothermia-associated loss of dendritic spines. J Neurosci, 24: 7843–7847PubMedGoogle Scholar
  92. Sala C (2002). Molecular regulation of dendritic spine shape and function. Neurosignals, 11: 213–223PubMedGoogle Scholar
  93. Segal I, Korkotian I, Murphy D D (2000). Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci, 23: 53–57PubMedGoogle Scholar
  94. Selkoe D J (2002). Alzheimer’s disease is a synaptic failure. Science, 298: 789–791PubMedGoogle Scholar
  95. Shepherd G M (1996). The dendritic spine: a multifunctional integrative unit. J Neurophysiol, 75: 2197–2210PubMedGoogle Scholar
  96. Shepherd G M (2004). The Synaptic Organization of the Brain, Fifth Edition. New York: Oxford University PressGoogle Scholar
  97. Smith D L, Pozueta J, Gong B, Arancio O, Shelanski M (2009). Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci U S A, 106: 16877–16882PubMedGoogle Scholar
  98. Sorra K E, Harris K M (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10: 501–511PubMedGoogle Scholar
  99. Spacek J, Harris KM (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci, 17: 190–203PubMedGoogle Scholar
  100. Star E N, Kwiatkowski D J, Murthy V N (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci, 5: 239–246PubMedGoogle Scholar
  101. Steward O, Schuman E M (2001). Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci, 24: 299–325PubMedGoogle Scholar
  102. Svoboda K, Mainen Z F (1999). Synaptic [Ca2 +]: intracellular stores spill their guts. Neuron, 22: 427–430PubMedGoogle Scholar
  103. Swann J W, Al-Noori S, Jiang M, Lee C L (2000). Spine loss and other dendritic abnormalities in epilepsy. Hippocampus, 10: 617–625PubMedGoogle Scholar
  104. Tada T, Sheng M (2006). Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol, 16: 95–101PubMedGoogle Scholar
  105. Takashima S, Becker L E, Armstrong D L, Chan F (1981). Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome. A quantitative and qualitative Golgi study. Brain Res, 225: 1–21Google Scholar
  106. Takashima S, Iida K, Mito T, Arima M (1994). Dendritic and histochemical development and ageing in patients with Down’s syndrome. J Intellect Disabil Res, 38 (Pt3): 265–273PubMedGoogle Scholar
  107. Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen O P (1999). Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci, 2: 618–624PubMedGoogle Scholar
  108. Tarrant S B, Routtenberg A (1977). The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. Tissue Cell, 9: 461–473PubMedGoogle Scholar
  109. Tashiro A, Yuste R (2004). Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci, 26: 429–440PubMedGoogle Scholar
  110. Trachtenberg J T, Chen B E, Knott G W, Feng G, Sanes J R, Welker E, Svoboda K (2002). Long-term in vivo imaging of experiencedependent synaptic plasticity in adult cortex. Nature, 420: 788–794PubMedGoogle Scholar
  111. Westrum L E, Jones D H, Gray E G, Barron J (1980). Microtubules, dendritic spines and spine appratuses. Cell Tissue Res, 208: 171–181PubMedGoogle Scholar
  112. Wong W T, Wong R O (2001). Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat Neurosci, 4: 351–352PubMedGoogle Scholar
  113. Woolley C S, Gould E, Frankfurt M, McEwen B S (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci, 10: 4035–4039PubMedGoogle Scholar
  114. Xu H T, Pan F, Yang G, Gan WB (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci, 10: 549–551PubMedGoogle Scholar
  115. Yuste R, Bonhoeffer T (2004). Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci, 5: 24–34PubMedGoogle Scholar
  116. Zhang S, Murphy T H (2004). Ca(2 +)-independent spine dynamics in cultured hippocampal neurons. Mol Cell Neurosci, 25: 334–344PubMedGoogle Scholar
  117. Zhang S, Murphy T H (2007). Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol, 5: e119PubMedGoogle Scholar
  118. Zhang S, Boyd J, Delaney K, Murphy T H (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci, 25: 5333–5338PubMedGoogle Scholar
  119. Zhou Q, Homma K J, Poo M M (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 44: 749–757PubMedGoogle Scholar
  120. Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009). Rapid functional maturation of nascent dendritic spines. Neuron, 61: 247–258PubMedGoogle Scholar
  121. Ziv N E, Smith S J (1996). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron, 17: 91–102PubMedGoogle Scholar
  122. Zuo Y, Lin A, Chang P, Gan W B (2005a). Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 46: 181–189PubMedGoogle Scholar
  123. Zuo Y, Yang G, Kwon E, Gan W B (2005b). Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature, 436: 261–265PubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Life SciencesLanzhou UniversityLanzhouChina
  2. 2.School of Basic Medical SciencesLanzhou UniversityLanzhouChina

Personalised recommendations