Frontiers of Biology in China

, Volume 4, Issue 2, pp 158–179 | Cite as

Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change

Review

Abstract

The model at the basis of trajectory analysis is conceptually simple. When applied to time series vegetation data, the projectile becomes a surrogate for vegetation state, the trajectory for the evolving vegetation process, and the properties of the trajectory for the true process characteristics. Notwithstanding its simplicity, the model is well-defined under natural circumstances and easily adapted to serial vegetation data, irrespective of source. As a major advantage, compared to other models that isolate the elementary processes and probe vegetation dynamics for informative regularities on the elementary level, the trajectory model allows us to probe for regularities on the level of the highest process integrity. Theories and a data analytical methodology developed around the trajectory model are outlined, including many numerical examples. A rich list of key references and volumes of supplementary information supplied in the Web Only Appendices rounds out the presentation.

Keywords

attractor migration determinism fractal dimension parallelism periodicity phase structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand M (1994). Pattern, process and mechanism-The fundamentals of scientific inquiry applied to vegetation science. Coenoses, 9: 81–92Google Scholar
  2. Anand M (2000). The fundamentals of vegetation change: complexity rules. Acta Biotheoretica, 48:1–14CrossRefGoogle Scholar
  3. Anand M, Orlóci L (1996) Complexity in plant communities: the notion and quantification. Journal of Theoretical Biology, 179: 179–186CrossRefGoogle Scholar
  4. Anand M, Orlóci L (1997) Chaotic dynamics in a multispecies community. Environmental and Ecological Statistics, 4: 337–344CrossRefGoogle Scholar
  5. Anand M, Orlóci L (2000) On partitioning of an ecological complexity function. Ecological Modelling, 132: 51–62CrossRefGoogle Scholar
  6. Anderson P M (1988) Late Quaternary pollen records from the Kobuk and Noatak River drainages, northwestern Alaska. Quaternary Research, 29: 263–276CrossRefGoogle Scholar
  7. Anderson R S (1993) A 35,000 year vegetation and climate history from Potato Lake, Mogollon Rim, Arizona. Quaternary Research, 40: 351–359CrossRefGoogle Scholar
  8. Bartha S, Czárán T, Scheuring I (1998) Spatio-Temporal scales of nonequilibrium community dynamics in abstract coenostate spaces. Abstracta Botanica, 22: 49-66Google Scholar
  9. Behling H, De Patta Pillar V, Orlóci L, Bauermann S G (2004). Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Paleogeography, Paleoclimatology, Paleoecology, 203: 277–297CrossRefGoogle Scholar
  10. Bonnefille R, Riollet G, Buchet G, Icole M, Lafont R, Arnold M, Jolly D (1995) Glacial/Interglacial record from intertropical Africa, high resolution pollen and carbon data at Rusaka, Burundi. Quaternary Science Reviews, 14: 917–936CrossRefGoogle Scholar
  11. Braun E L (1950) Deciduous Forests of Eastern North America. Toronto: BlakstonGoogle Scholar
  12. Cajander A K (1909). Ïber Waldtypen. Helsinki: Acta Forestalia Fennica 1Google Scholar
  13. Çambel A B (1993). Applied Chaos Theory: a Paradigm for Complexity. New York: Academic PressGoogle Scholar
  14. Clements F E (1916). Plant Succession: an Analysis of the Development of Vegetation. Publ. No. 242. Washington: Carnegie InstitutionGoogle Scholar
  15. Colinvaux P A, de Oliveira P E, Moreno J E, Miller M C, Bush M B (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274: 85–88CrossRefGoogle Scholar
  16. Cox D R, Lewis P A W (1968) The Statistical Analysis of Series of Events. London: MethuenGoogle Scholar
  17. Cwynar L C (1982) A Late-Quaternary vegetation history from Hanging Lake, northern Yukon. Ecological Monographs, 52: 1–24CrossRefGoogle Scholar
  18. Czárán T (1998). Spatiotemporal Models of Population and Community Dynamics. Population and Community Biology Series. Vol. 21. London: Chapman and HallGoogle Scholar
  19. Delcourt P A, Delcourt H R (1987). Long-term Forest Dynamics of the Temperate Zone. New York: Springer-VerlagGoogle Scholar
  20. Diggle P J (1981). Statistical Aalysis of Point Patterns. London: Academic PressGoogle Scholar
  21. Edgington E S (1987). Randomization Tests. 2nd ed. New York: Marcel DekkerGoogle Scholar
  22. Espenshade E B Jr, Morrison J L, eds. (1990). Good’s World Atlas. 18th ed. New York: Rand McNally, 16Google Scholar
  23. Fekete G (1985). Terrestrial vegetation succession: theories, models, reality. In: Fekete G, ed. Basic questions of Coenological Succession. Budapest: Akademiai Kiadó, 31–63 (In Magyar)Google Scholar
  24. Fekete G, Virágh K, Aszalós R, Orlóci L (1998) Landscape and ecological differentiation of Brachypodium pinnatum grasslands in Hungary. Coenoses, 13: 39–53Google Scholar
  25. Feoli E, Orlóci L (1985) Species dispersion profiles of anthropogenic grasslands in the Italian Pre-Alps. Vegetatio, 60: 113–118Google Scholar
  26. Gleick J (1987). Chaos: Making a New Science. New York: Penguin BooksGoogle Scholar
  27. Goodall D W (1967) Computer simulation of changes in vegetation subject to grazing. Journal of Indian Botanical Society, 46: 56–61Google Scholar
  28. Goodall D W (1972) Building and testing ecosystem models. In: Jeffers N R, ed. Mathematical Models in Ecology. Oxford: Blackwell, 173–214Google Scholar
  29. Greig-Smith P (1952) The use of random and contiguous quadrats in the study of the structure of plant communities. Annals of Botany, 16: 293–316Google Scholar
  30. Greig-Smith P (1957). Quantitative Plant Ecology. London: ButterworthsGoogle Scholar
  31. Greig-Smith P (1983). Quantitative Plant Ecology. 3rd ed. London: Blackwell ScientificGoogle Scholar
  32. Hammerssley J M, Handscom D C (1967). Monte Carlo Methods. London: MethuenGoogle Scholar
  33. He X S, Orlóci L (1999) Anderson Pond revisited: the late Quaternary vegetation process. Abstracta Botanica, 22: 81–93Google Scholar
  34. Hill M O, Gauch H G (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42: 47–58CrossRefGoogle Scholar
  35. Jacobs B F (1985) A middle Wisconsin pollen record from Hay Lake, Arizona. Quaternary Research, 24: 121–130CrossRefGoogle Scholar
  36. Kerner von Marilaun A (1863). Das Pflanzenleben der Danauländer. Wagner: InnbruckGoogle Scholar
  37. Kershaw A P (1994) Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, and Palaeoecology, 109: 399–412CrossRefGoogle Scholar
  38. Krajina V J (1963) Biogeoclimatic zones on the Hawaiian Islands. Newsletter of the Hawaiian Botanical Society, 7: 93–98Google Scholar
  39. Kühler A W (1990). Natural vegetation. In: Espenshade E B Jr, Morrison J L, eds. Good’s World Atlas, 18th ed. New York: Rand McNally, 8–9Google Scholar
  40. Legendre P, Legendre L (1983). Numerical Ecology. Amsterdam: ElsevierGoogle Scholar
  41. Lippe E, De Smidt J T, Glen-Lewin D C (1985) Markov models and succession: a test from a heathland in the Netherlands. Journal of Ecology, 73: 775–791CrossRefGoogle Scholar
  42. Lorenz E N (1963) Deterministic nonperiodic flow. Journal of Atmospheric Science, 20: 130–141CrossRefGoogle Scholar
  43. Lotka A J (1925). Elements of Physical Biology. Baltimore: Williams and WilkinsGoogle Scholar
  44. Lozhkin AV, Anderson P M, Eisner W R, Ravako L G, Hopkins D M, Brubaker L B, Colinvaux P A, Miller M C (1993) Late Quaternary lacustrine pollen records from southwestern Beringia. Quaternary Research, 39: 314–324CrossRefGoogle Scholar
  45. Manabe S, Bryan K, Spelman M J (1990) Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. Journal of Physical Oceanography, 20: 722–749CrossRefGoogle Scholar
  46. Mandelbrot B B (1967) How long is the coast line of Britain? Statistical self similarity and fractional dimension. Science, 156: 636–638PubMedCrossRefGoogle Scholar
  47. Mandelbrot B B (1977). Fractals: form, chance and dimension. San Francisco: FreemanGoogle Scholar
  48. Mandelbrot B B (1983). The fractal geometry of Nature. San Francisco: FreemanGoogle Scholar
  49. Margalef R (1989) On diversity and connectivity as historical expressions of ecosystems. Coenoses, 4: 121–126Google Scholar
  50. Mason J (1990). The greenhouse effect and global warming. Information Office, British Coal, C.R.E. Stoke Orchard, Cheltenham, Gloucestershire, U.K. GL52 4RZGoogle Scholar
  51. May R M (1976) Simple mathematical models with very complicated dynamics. Nature, 261: 459–467PubMedCrossRefGoogle Scholar
  52. May R M (1987) Chaos and the dynamics of biological populations. London: Proc. Royal Soc., Series A, 413: 27–44Google Scholar
  53. May R M, ed. (1981). Theoretical Ecology. Oxford: BlackwellGoogle Scholar
  54. May R M, Oster G F (1976) Bifurcations and dynamic complexity in simple ecological model. The American Naturalist, 110: 573–599CrossRefGoogle Scholar
  55. McIntosh R P (1985). The Background of Ecology: Concept and Theory. New York: Cambridge University PressGoogle Scholar
  56. Metropolis N (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue, 125–130. available at URL: http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
  57. Metropolis N, Ulam S (1949) The Monte Carlo method. Journal of the American Statistical Association, 44: 335–341PubMedCrossRefGoogle Scholar
  58. Mueller-Dombois D (1992). A natural dieback theory, cohort senescence, as an alternative to the decline disease theory. In: Manion P D, Lachance D, eds. Forest Decline Concepts. St. Paul, MN: The Am Phytopath Soc Press, 26–37Google Scholar
  59. Orlóci L (1974) On information flow in ordination. Vegetatio, 29: 11–16CrossRefGoogle Scholar
  60. Orlóci L (1978). Multivariate Analysis in Vegetation Research. The Hague: W. Junk bvGoogle Scholar
  61. Orlóci L (1991)a On character-based community analysis: choice, arrangement, comparison. Coenoses, 6: 103–107Google Scholar
  62. Orlóci L (1991)b. Entropy and Information. Ecological Computations Series (ECS) Vol. 3. The Hague: SPB Academic Publishing bvGoogle Scholar
  63. Orlóci L (1991)c. CONAPACK: A program for Canonical Analysis of Classification Tables. Ecological Computations Series: Vol. 4. The Hague: SPB Academic PublishingGoogle Scholar
  64. Orlóci L (1993). The complexities and scenarios of ecosystem analysis. In: Patil G P, Rao C R, eds. Multivariate Environmental Statistics. New York: Elsevier Scientific, 423–432Google Scholar
  65. Orlóci L (1994) Global warming: the process and its anticipated phytoclimatic effects in temperate and cold zone. Coenoses, 9: 69–74Google Scholar
  66. Orlóci L (2001)a Pattern dynamics: an essay concerning principles, techniques, and applications. Community Ecology, 2: 1–15CrossRefGoogle Scholar
  67. Orlóci L (2001)b Prospects and expectations: reflections on a science in change. Community Ecology, 2: 187–196CrossRefGoogle Scholar
  68. Orlóci L (2006) Diversity partitions in 3-way sorting: functions, Venn diagram mappings, typical additive series, and examples. Community Ecology, 7: 253–259CrossRefGoogle Scholar
  69. Orlóci L (2008) Vegetation displacement issues and transition statistics in climate warming cycle. Community Ecology, 9: 83–98CrossRefGoogle Scholar
  70. Orlóci L, Anand M, He X S (1993) Markov chain: a realistic model for temporal coenosere? Biométrie-Praximétrie, 33: 7–26Google Scholar
  71. Orlóci L, Anand M, Pillar V D (2002)b Biodiversity analysis: issues, concepts, techniques. Community Ecology, 3: 217–236CrossRefGoogle Scholar
  72. Orlóci L, Orlóci M (1988) On recovery, Markov chains and canonical analysis. Ecology, 69: 1260–1265CrossRefGoogle Scholar
  73. Orlóci L, Pillar V D, Anand M (2006) Multiscale analysis of palynological records: new possibilities. Community Ecology, 7: 53–68CrossRefGoogle Scholar
  74. Orlóci L, Pillar V D, Anand M, Behling H (2002)a Some interesting characteristics of the vegetation process. Community Ecology, 3: 125–146CrossRefGoogle Scholar
  75. Petit J R, Jouzel D, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V, Lorius C, Pepin L, Ritz C, Saltzmann E, Stievenard M (2001). Vostok Ice Core Data for 420,000 years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001-076. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  76. Pielou E C (1977). An Introduction to Mathematical Ecology. New York: Wiley-InterscienceGoogle Scholar
  77. Pillar V D, Orlóci L (1996) On randomisation testing in vegetation science: multifactor comparison of relevé groups. Journal of Vegetation Science, 7: 587–592CrossRefGoogle Scholar
  78. Podani J (1994). Multivariate Analysis in Ecology and Systematics. The Hague: SPB PublishingGoogle Scholar
  79. Rényi A (1961). On measures of entropy and information. In: Neyman J, ed. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 547–561Google Scholar
  80. Reyner J N (1971). An Introduction to Spectral Analysis. London: Pion LimitedGoogle Scholar
  81. Ripley B D (1981). Spatial Statistics. New York: Wiley & SonsCrossRefGoogle Scholar
  82. Schroeder M (1991). Fractals, Chaos, Power laws. New York: FreemanGoogle Scholar
  83. Schweingruber F H (1996). Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forests Snow and Landscape Research, Bern: Birmensdorf and Paul HauptGoogle Scholar
  84. Shugart H H, ed. (1977). Time Series and Ecological Processes. Philadelphia: SIAMGoogle Scholar
  85. Singh G, Geissler E A (1985). Late Cainozoic history of vegetation, fire, lake levels and climate at Lake George, New South Wales, Australia. Philosophical Transactions of the Royal Society of London Series B, 311: 379–447CrossRefGoogle Scholar
  86. Sukachev V N (1913). Introduction to the Study of Plant Communities. Bibl. St. Petersburg: Natur (In Russian)Google Scholar
  87. Trewartha G T (1990). Climatic regions. In: Espenchade E B Jr, Morrison J L eds. Rand McNally Good’s World Atlas. 18th ed. New York: Rand McNally, 8–9Google Scholar
  88. Trewartha G T (2001). Global Mechanism of UNCCD, Via del Serafico 107, 00142 Rome, Italy. Web address: www.gm-unccd.org/English/Field/aridity.htmGoogle Scholar
  89. Usher M B (1981) Modelling ecological succession with particular reference to Markovian models. Vegetation, 46: 11–18CrossRefGoogle Scholar
  90. Usher M B (1992). Statistical models of succession. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 215–248Google Scholar
  91. van Hulst R (1992). From population dynamics to community dynamics: modelling succession as a species replacement process. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 188–214Google Scholar
  92. van Hulst R (2000). Vegetation dynamics and plant constraints: separating generalities and specific. Community Ecology, 1: 5–12CrossRefGoogle Scholar
  93. Volterra V (1926). ’Variazioni e fluttuazioni del numero d’individui in specie d’animali conviventi’, Mem. Acad. Lincei, Vol. 2, No. VI. 31–113. Reprinted: 409-448 in Chapman, R.N. 1931. Animal Ecology. McGraw-Hill, NYGoogle Scholar
  94. von Post L (1946) The prospect for pollen analysis in the study of the earth climatic history. New Phytologist, 45: 193–217CrossRefGoogle Scholar
  95. Walter H, Harnickell E, Mueller-Dombois D (1975). Climate Diagram Maps. New York: Springer-VerlagGoogle Scholar
  96. Watts W A, Bradbury J P (1982) Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quaternary Research, 17: 56–70CrossRefGoogle Scholar
  97. Watts W A, Hansen B C S, Grimm E C (1992) Camel Lake: A 40,000-yr record of vegetational and forest history from northwest Florida. Ecology, 73: 1056–1066CrossRefGoogle Scholar
  98. Wilkins G R, Delcourt P A, Delcourt H R, Harrison F W, Turner M R (1991) Paleoecology of central Kentucky since the last glacial maximum. Quaternary Research, 36: 224–239CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Ecologia QuantitativaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.LondonCanada

Personalised recommendations