Advertisement

Frontiers of Biology in China

, Volume 2, Issue 2, pp 125–143 | Cite as

Origin and differentiation of endemism in the flora of China

  • Wu Zhengyi 
  • Sun Hang 
  • Zhou Zhekun 
  • Peng Hua 
  • Li Dezhu 
Review

Abstract

The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China. The results showed that there are five families containing more than ten endemic genera, namely, Gesneriaceae (27), which hereafter refers to the number of endemic genera in China, Composite (20), Labiatae (12), Cruciferae (11), and Umbelliferae (10), 15 families with two endemic genera, and another 30 families with only one endemic genus. Four monotypic families (Ginkgoaceae, Davidiaceae, Eucommiaceae and Acanthochlamydaceae) are the most ancient, relict and characteristic in the flora of seed plants in China. Based on integrative data of systematics, fossil history, and morphological and molecular evidence of these genera, their origin, evolution and relationships were discussed. In gymnosperms, all endemic genera are relicts of the Arctic-Tertiary flora, having earlier evolutionary history, and can be traced back to the Cretaceous or to the Jurassic and even earlier. In angiosperms, the endemic genera are mostly relicts, and are represented in all lineages in the “Eight-Class System of Classification of Angiosperms”, and endemism can be found in almost every evolutionary stage of extant angiosperms. The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous, while neo-endemism mostly originated in the late Tertiary. They came from Arctic-Tertiary, Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements, and the blend of the three elements with many genera of autochthonous origin. The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge, and the Bering Bridge became discontinuous during the Tertiary, as well as the climate change and glaciations in the late Tertiary and the Quaternary. Therefore, the late Tertiary is the starting point of extant endemism of the flora in China.

Keywords

Chinese flora endemism origin evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Shehbaz I, Yue J P, Sun H (2004). Shangrilaia (Brassicaceae), a new genus from China. Novon, 14(3): 271–274Google Scholar
  2. Antonio SALATINO Salatino A, Salatino M L F, Mello-Silva R, van Sluys M A, Giannasi D E, Price R (2001). Phylogenet icinference in Velloziaceae using chloroplast TrnL-F sequences. Syst Bot, 26(1): 92–103Google Scholar
  3. Axelrod D I (1976). History of the Coniferous Forests, California and Nevada. Berkeley: University of California Press, 70Google Scholar
  4. Axelrod D I (1986). Cenozoic history of some western American pines. Ann Missouri Bot Gard, 73: 565–641CrossRefGoogle Scholar
  5. Behnke H-D, Treutlein J, Wink M, Kramer K, Schneider C, Kao P C (2000). Systematics and evolution of Velloziaceae, with special reference to sieve-element plastids and rubcL sequence data. Bot J Linn Soc, 134: 93–129CrossRefGoogle Scholar
  6. Bobrov A C, Melikian A P, Romanov M S (2004). Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Bot J Linn Soc, 145: 437–443CrossRefGoogle Scholar
  7. Cantino P D (1992). Evidence for a polyphyletic origin of the Labiatae. Ann Missouri Bot Gard, 79: 361–379CrossRefGoogle Scholar
  8. Chaney R W (1951). A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Trans Am Philos Sco NS, 40: 171–263CrossRefGoogle Scholar
  9. Chen Z D, Manchester S R, Sun H Y (1999). Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology and paleobotany. Amer J Bot, 86(8): 1168–1181CrossRefGoogle Scholar
  10. Chen Z D (1999). Phylogeny and Phytogeography of the Betulaceae [A]. In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 236–258 (in Chinese)Google Scholar
  11. Cheng Y C, Nicolson R G, Tripp K, Chaw S M (2000). Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Mol Phylogen Evol, 14(3): 353–365CrossRefGoogle Scholar
  12. Davis C C, Charles D B, Sarach M, Michael J D (2002). Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. PNAS, 99(10): 6833–6837PubMedCrossRefGoogle Scholar
  13. Delaubenfels D J, Adema F (1998). A taxonomic revision of the genera Cycas and Epicycas Gen. Nov. (Cycadaceae). Blumea, 43: 351–400Google Scholar
  14. Deng M B, Wei H T, Wang X Q (1992). Shaniodendron, a new genus of Hamamelidaceae from China. Acta Phytotax Sin, 30(1): 57–61Google Scholar
  15. Endress P K (1989). Phylogenetic relationships in the Hamamelidoideae. In: Crane P R, Blackmore S, eds. Evolution, Systematics and Fossil History of the Hamamelidae, 1: Introduction and “lower” Hamamelidae. Oxford: Clarendon Press, 227–248Google Scholar
  16. Eriksson T, Donoghue M J (1997). Phylogenetic relationships of Sambucus and Adoxa (Adoxoideae, Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst Bot, 22(3): 555–573CrossRefGoogle Scholar
  17. Farjon (1990). Pinaceae. Germany: Koleltz Scientific BookGoogle Scholar
  18. Ferguson K K (1967). On the phytogeography of conbiferales in the European Cenozoic. Palaeogeogr Palaeoclim Palaeoecol, 3(1): 73–110CrossRefGoogle Scholar
  19. Florin R (1963). The distribution of conifer and taxad genera in time and space. Acta Horti Berg, 20: 121–132Google Scholar
  20. Fritsch P W (1996). Isozyme analysis of intercontinental disjuncts within Styrax (Styracaceae): Implications for the Madrean-Tethyan hypothesis. Amer J Bot, 83: 342–355CrossRefGoogle Scholar
  21. Fritsch P W (2001). Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol Phylogen Evol, 19(3): 387–408CrossRefGoogle Scholar
  22. Gadek P A, Alpers D L, Heslewood M M, Quinn C J (2000). Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. Amer J Bot, 87(7): 1044–1057CrossRefGoogle Scholar
  23. Gao B C (1998). Confirmation of Acanthochlamydaceae, a new proposed monocotyledons family and its systematic position. Acta Bot Yunnan, 20(1): 23–31 (in Chinese)Google Scholar
  24. Gregor H J (1978). Die Miozanen Fruchtund Samenfloren der oberpfalzer Braunkohle I. Funde aus dem sandigen Zwischenmittelm. Palaeontographica, 167(B): 8–103Google Scholar
  25. Guan Z T (1996). The Ancient Plant Geography of Cycas, the Cycas Plant in China. Chengdu: Si Chuan Technology Press, 159–181 (in Chinese)Google Scholar
  26. Guo S X (2000). Evolution, palaeobiogeography and paleoecology of Eucommiaceae. Paleobotanist, 49: 65–83Google Scholar
  27. Hao R M (1997). On the area 12 types of the Chinese endemic genera of seed plants. Acta Phytotax Sin, 35(6): 500–510 (in Chinese)Google Scholar
  28. Hedge I C (1976). A systematic and geographical survey of the Old World Cruciferae. In: Vaughan J G et al., eds. The Biologyand Chemistry of the Cruciferae. London, New York: San Francisco A Subsidiary of Harcourt Brace Jovanovich, Publishers, 1–45Google Scholar
  29. Hoare A L, Knapp S (1997). A phylogenetic conspectus of the tribe Hyoscyameae (Solanaceae). Bull Natural History Museum (Botany Series), 27: 11–29Google Scholar
  30. Hong D Y (1999). The geography of the campanulaceae on the distribution centres. In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 516–529Google Scholar
  31. Hu Y F, Chen Z D, Chen C J (1999). Discoveries of some fossils of cycad reproductive organs from China and their significance to the origin of cycads. In: Chen C J (ed.) Biology and Conservatrion of Cycads. In: Proceedings of the Fourth International Conference on Cycad Biology. International Academic Publishers, 135–141Google Scholar
  32. Huang S M (1999). Systematic position and geographical distribution of styracaceae. In: Lu Anmin. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 319–331 (in Chinese)Google Scholar
  33. Kao P C, Kubitzki K (1998). Acanthochlaydaceae. In: Kubitzki K ed. The Families and Genera of Vascular Plants Springer, III: 55–58Google Scholar
  34. Kubitzk K, Krutzsch W (1996). Origins of East and South East Asian Plant Diversity. In: Zhang A L, Wu S G, eds. Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press, 25–27Google Scholar
  35. Kusumi J, Yoshimaru H, Tachida H, Tsumura Y (2000). Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Amer J Bot, 87(10): 1480–1488CrossRefGoogle Scholar
  36. Lepage B A, Basinger J F (1995). Evolutionary history of the genus Pseuydolarix Gordon (Piaceae). Int J Plant Sci, 156: 910–950CrossRefGoogle Scholar
  37. Li H L (1953). A reclassification of Libocedrus and Cupressaceae. J Arn Arb, 34: 17–36Google Scholar
  38. Li J H, Bogle A L, Klein A S (1999a). Plylogenetic relationship in the Hamamelidaceae: Evidence from the nucleotide sequences of theplastid gene matK. Plant Syst Evol, 218: 205–219CrossRefGoogle Scholar
  39. Li J H, Bogle A L, Klein A S (1999b). Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacer (ITS) of nudear ribosomal DNA. 86(7): 1027–1037Google Scholar
  40. Li J H, Bogle A L, Klein A S, Pan K Y (1997). Close relationship between Shaniodendron and Parrotia (Hamamelidaceae), evidence from ITS sequences of nuclear ribosomal DNA. Acta Phytotax Sin, 35(6): 481–493Google Scholar
  41. Li J H, Davis C C, Donoghue M J, Kelley S. Del Tredici P (2001a). Phylogenetic relationships of Torreya (Taxaceae) inferred from sequences of nuclear ribosomal DNA ITS region. Harv Pap Bot, 6(1): 275–281Google Scholar
  42. Li J H, Davis C C, Tredici P D, Donoghue M J (2001b). Phylogeny and biogeography of Taxus (Taxaceae) inferred from sequences of the internal transcribed spacer region of nuclear ribosomal DNA. Harv Pap Bot, 6(1): 267–274Google Scholar
  43. Li L C (1989). Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Bot Yunnan, 11(2): 113–131Google Scholar
  44. Li N (1999). Studies on the geographic distribution, origin and dispersal of the family pinaceae lindl. In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 17–39Google Scholar
  45. Li X W, Fang G S (1997). A new record genus in Yunnan. J Southwest Forest Coll, 17(1): 10–11 (in Chinese)Google Scholar
  46. Li Z Y (1999). The geographical distribution of the subfamily cyrtandroideae endl.emend.burtt (Gesneriaceae). In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 497–515 (in Chinese)Google Scholar
  47. Li Z Y, Wang Y Z (2004). Plants of Gesneriaceae in China. Zhengzhou: Henan Science and Technology Publishing House (in Chinese)Google Scholar
  48. Liang H X, Wu Z Y (1999). On the taxonomic system, phylogeny and distribution in adoxaceae. In: Lu Anmin, The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 487–496 (in Chinese)Google Scholar
  49. Liang H X (1995). On the evolution and distribution in Saururaceae. Acta Bot Yunnan, 17(3): 255–267 (in Chinese)Google Scholar
  50. Lin YR (1993). On the primary study of the systematics and floristics of Compositae. Bull Bot Res, 13(2): 152–201Google Scholar
  51. Liu J Q, Chen Z D, Lu A M (2000). The phylogenetic relationships of an endemic genus Sinadoxa in the Qinghai-Tibet Plateau: Evidence from ITS sequence analysis. Acta Bot Sin, 42(6): 656–658 (in Chinese)Google Scholar
  52. Liu T S, Su H J (1983). Biosystematic studies of Taiwania and numerical evaluations of the systematics of Taxodiaceae. Taipei: Taiwan MuseumGoogle Scholar
  53. Liu Y S, Basinger J F (2000). Fossil Cathaya (Pinaceae) pollen from the Canadian High Arctic. Int J Plant Sci, 161(5): 829–847CrossRefGoogle Scholar
  54. Lu A M, Zhang Z Y (1986). Studies of the subtribe Hyoscyaminae in China. In: D’Arcy WG, ed. Solanaceae: Biology and Systematics. New York: Columbia University Press, 56–78Google Scholar
  55. Mai D H (1983). Palaeogeographic extension in Europe of the present Asiatic genus Rehderodendron Hu (Styracaceae). Comphrend Acad Sci Paris Ser, II: 125–130Google Scholar
  56. Manchester S R (1999). Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard, 86: 742–522CrossRefGoogle Scholar
  57. Manchester S R, Chen Z D (1998). A new genus of Coryloideae (Betulaceae) from the Paleocene of North America. Int J Plant Sci, 159(3): 522–532CrossRefGoogle Scholar
  58. Manchester S R, Tiffney B H (2001). Integration of paleobotanical and neobotanical data in the assessment of phytogeographic history of holarctic angiosperm clades. Int J Plant Sci, 162 (supple.): S19–S27CrossRefGoogle Scholar
  59. Manos P S, Stone D E (2001). Evolution, phylogeny, and systematics of the Juglandaceae. Ann Missouri Bot Gard, 88(2): 231–269CrossRefGoogle Scholar
  60. McClain A M, Manchester S R (2001). Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of Aceroideae. Amer J Bot, 88(7): 1316–1325CrossRefGoogle Scholar
  61. Mclver E E (1992). Fossil Fokienia (Cupressaceae) from Paleocene of Alberta, Canada. Can J Bot, 70: 742–749Google Scholar
  62. Mclver E E, Basinger J F (1990). Fossil seed cones of Fokienia (Cupressaceae) from the Paleocene Ravenscrag formation of Sakatchewan, Canada. Can J Bot, 68: 1609–1618Google Scholar
  63. Meng S W, Douglas A W, Li Z D (2003). Phylogeny of Saururaceae on Morphology and five regions from Three Plants Genomes. Ann Missouri Bot Gard, 592–602Google Scholar
  64. Miller C N (1975). Early evolution in the Pinaceae. Rev Palaeobot Palybol, 21: 101–117CrossRefGoogle Scholar
  65. Oxelman B, Lidén M (1995). The position of Circaeaster-evidence from nuclear ribosomal DNA. Pl Syst Evol, 9 (Supple): 189–193Google Scholar
  66. Peng F, She M L (1991). The discussion on the origin and systemic position of Dickinsia. Bull Nan Bot Gard Mem Sun Yat Sen, 23–30 (in Chinese)Google Scholar
  67. Peng Y L, Sun H, Gu Z J (2002). Cytological study on Nouelia and Leucomeris (Compositae). Acta Bot Yunnan, 24(1): 82–86 (in Chinese)Google Scholar
  68. Prince L M, Parks C R (2001). Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. Amer J Bot, 88(12): 2309–2320CrossRefGoogle Scholar
  69. Pyck N, Smets E (2000). A search for the phylogenetic position of the seven-son flower (Heptacodium, Dispacles): Combing molecular and morphological evidence. Pl Syst Evol, 225: 185–199CrossRefGoogle Scholar
  70. Qian H (2001). A comparison of generic endemism of vascular plants between East Asia and North America. Int J Plant Sci, 162(1): 191–199CrossRefGoogle Scholar
  71. Qian H (2002). Floristic relationship between East Asia and North America: Test of Gray’s Hypothesis. Amer Nat, 160(3): 317–332CrossRefGoogle Scholar
  72. Steven R M, Crane P R, Golvneva, (1999). An extinct genus with affinites to extant Davidia and Camptoheca (Cornales) from the Paleocene of North American and Eastern Asia. Int J Plant Sci, 160(1): 188–207CrossRefGoogle Scholar
  73. Sun G (1998). In search of the first flower, a jurassic angiosperm archaefrutus from Northeast China. Science, 282(5934): 1601–1771Google Scholar
  74. Sun G (2002). Archaefructaceae, a new basal angiosperm family. Science, 296: 899–904PubMedCrossRefGoogle Scholar
  75. Sun H, Li Z M (2003). Qinghai-Tibet Plateau uplift and its impact on Tethlys Flora. Adv Earth Sci, 19(6): 852–862 (in Chinese)Google Scholar
  76. Takhtajan A (1969). Flowering Plants Origin and Dispersal. Oliver & Boyd: Edinburgh, 165–203Google Scholar
  77. Tang Y C, Xiang Q Y (1989). A reclassification of the genus Clemathoclethra (Actinidaceae) and further note on the methodology of plant taxonomy. Acta Phytotax Sin, 27(2): 81–95Google Scholar
  78. Tao J R (2000). The Development and Evolvement of the Plant Flora from the late Cretaceous Period to Cenozoic in China. Beijing: Technology Press, 189 (in Chinese)Google Scholar
  79. Tiffney B H, Manchester S R (2001). The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in northern hemisphere Tertiary. Int J Plant Sci, 162(6 suppl.): S3–S17CrossRefGoogle Scholar
  80. Tiffney B H (1985). Perspectives on the origin of the floristic similarity between East Asia and eastern North America. J Arn Arb, 66(1): 73–94Google Scholar
  81. Tralau V H (1965). Halesia cf Carolina L (Styracaceae) in oberen pliozan von Weilerswist in Westdeutschland. Bot Hot, 118(2): 170–176Google Scholar
  82. Tu T Y, Sun H, Gu Z J (2005). Cytological studies on the Sino-Himalayan endemic Anisodus and four related genera from the tribe Hyoscyameae (Solanaceae) and their systematic and evolutionary implications. Bot J Linn Soc, 147: 457–468CrossRefGoogle Scholar
  83. Wagstaff S J, Hickerson L, Spangler R (1998). Phylogeny in Labiatae s 1, inferred from cpDNA sequences. Pl Syst Evol, 209: 265–274CrossRefGoogle Scholar
  84. Wang D Y (1996). Taxonomy of Cycas in China. In: Wang F X, Liang H B, eds. Cycads in China [M]. Guangzhou: Guangdong Science and Technology Press, 19–32Google Scholar
  85. Wang D Y (2001). On geographical distribution of Cycadaceae. Adv Plant Sci, 4: 45–56Google Scholar
  86. Wang H S (1989). A study on the origin of Spermatophytic genera endemic to China. Acta Bot Yunnan, 11(1): 1–16 (in Chinese)Google Scholar
  87. Wang H S, Zhang Y L (1994). The biodiversity and characters of Spermatophytic genera endemic to China. Acta Bot Yunnan, 16(3): 209–220 (in Chinese)Google Scholar
  88. Wang X Q, Shu Y Q (2000). Chloroplast matK gene phylogeny of Taxaceae and Cepalotaxaceae, with additional reference to the systematic position of Nageia. Acta Phytotax Sin, 38(3): 201–210 (in Chinese)Google Scholar
  89. Wen J (2001). Evolution of East Asian-eastern North American biogeographic disjunctions: A few additional issues. Int J Plant Sci, 162(6 suppl.): S117–S122CrossRefGoogle Scholar
  90. Wen J, Frodin D G (2001). Metapanax, a new genus of Araliaceae from China and Vietnam. Brittonia, 53(1): 116–121Google Scholar
  91. Wen J (1999). Evolution of East Asian and eastern North American disjunct distributions in flowering plants. Ann Rev Ecol Syst, 30: 421–455CrossRefGoogle Scholar
  92. Wen J, Plunkett G M, Mitchell A D, Wagsta S J (2001). The evolution of Araliaceae: A phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot, 26(1): 144–167Google Scholar
  93. Wolfe J A (1975). Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary. Ann Missouri Bot Gard, 62: 264–279CrossRefGoogle Scholar
  94. Wu C Y, Chen S C (2004). Flora Reipublicae Popularis Sinicae Tomus 1. Beijing: Science Press (in Chinese)Google Scholar
  95. Wu C Y, Li H W (1982). On the evolution and distribution in Labiatae. Acta Bot Yunnan, 4(2): 97–118 (in Chinese)Google Scholar
  96. Wu Z Y (1988). Hengduan Mmountains flora and her significance. J Jap Bot, 63(9): 1–15Google Scholar
  97. Wu Z Y (1991). The areal-types of Chinese genera of seed plants. Acta Bot Yunnan, IV(Supp.): 1–139 (in Chinese)Google Scholar
  98. Wu Z Y, Li D Z (2000). Yunnanopila—a primitive new genus of Opiliaceae from Yunnan plateau, China and its biogeographic significance. Acta Bot Yunnan, 22(3): 248–250 (in Chinese)Google Scholar
  99. Wu Z Y, Lu A M, Tan Y C, Chen Z D, Li D Z (2002). Synopsis of a new “polyphyletic-polychronic-polytopic” system of the angiosperms. Acta Phytotax Sin, 40(4): 289–322 (in Chinese)Google Scholar
  100. Wu Z Y, Tang Y C, Chen Z D, Cheng Z D, Li D Z (2003). The Families and Genera of Angiosperms in China, A Comprehensive Analysis. Beijing: Science Press (in Chinese)Google Scholar
  101. Wu Z Y, Wu S G (1996). A proposal for a new floristic kingdom (Realm)—The E. Asiatic Kingdom, its delineation and characteristics. In: Zhang A L, Wu S G eds. Floristic Characteristics and Diversity of East Asian Plants, Proceedings of the First International Symposium on Floristic Characteristics and Diveristy of East Asian Plants. Beijing: China Higher Education Press, 3–42 (in Chinese)Google Scholar
  102. Wu Z Y, Zhou Z K, Li D Z, Peng H Sun H (2003). The area-types of the World families of seed plants. Acta Bot Yunnan, 25(3): 245–257 (in Chinese)Google Scholar
  103. Xu R, Zhu J, Chen H (1979). Baoding Plant Groups in Late Trias in China. Beijing: Technology Press (in Chinese)Google Scholar
  104. Yang S X, Min T L (1995). Studies on the systematic position of genera Pyrenaria, Tutcheria, Parapyrenaria of family Theaceae. Acta Bot Yunnan, 17(2): 192–196 (in Chinese)Google Scholar
  105. Ying J S (1989). Aerography of the Gymnosperms of China (1)—distribution of the Pinaceae of China. Acta Phytotax Sin, 27(1): 27–38 (in Chinese)Google Scholar
  106. Ying J S (1996). Areography of the endemic genrea of seed plants in China. Acta Phytotax Sin, 34(5): 479–485 (in Chinese)Google Scholar
  107. Yu Y F (1999). Origin, evolution and distribution of the Taxodiaceae. In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera. Beijing: Science Press, 40–62 (in Chinese)Google Scholar
  108. Zhang Z Y, Lu A M (1999). Hamamelidaceae: Geographic distribution, fossil history and origin. In: Lu Anmin, ed. The Geography of Spermatophytic Families and Genera [M]. Beijing: Science Press, 196–217Google Scholar
  109. Zhang Z Y, Zhou Z K, Gu Z J (2002). Karyomorphology of Heptacodium (Carpifoliaceae s. str.) and its phylogenetic implications. Taxon, 51: 499–505CrossRefGoogle Scholar
  110. Zheng M (1984). The floristic relationship between eastern China and Japan. Acta Phytotax Sin, 22(1): 1–5 (in Chinese)Google Scholar
  111. Zhou Z K, Arata M (2005). Fossil history of some endemic seed plants of East Asia and its phytogeographical significance. Acta Bot Yunnan, 27(5): 449–470 (in Chinese)Google Scholar
  112. Zhou Z K, Crepet W, Nixon K (2001). The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescence and fruits of Altingioideae. Amer J Bot, 88(5): 753–766CrossRefGoogle Scholar
  113. Zhou Z Y (2003). Mesozoic Ginkgoaleans: Phylogeny, classification and evolutionary trends. Acta Bot Yunnan, 25(4): 377–396Google Scholar
  114. Zhou Z Y, Sheng S L (2003). The missing link of Ginkgo evolution. Nature, 423: 821–822PubMedCrossRefGoogle Scholar
  115. Zhu J N, Du X M (1981). A new cycad — Primocycas chinensis Gen. et sp. nov. Discovers from the Lower Permian in Shanxi, China and its significance. Acta Bot Sin, 23(5): 401–404 (in Chinese)Google Scholar
  116. Zhu J N, Zhang X S, Ma J (1994). A new genus and species—Cycadostrobilus paleozoicus Zhu of Cycadaceae from the Permian of China. Acta Phytotax Sin, 32(4): 340–344 (in Chinese)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2007

Authors and Affiliations

  • Wu Zhengyi 
    • 1
  • Sun Hang 
    • 1
  • Zhou Zhekun 
    • 1
  • Peng Hua 
    • 1
  • Li Dezhu 
    • 1
  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina

Personalised recommendations