Frontiers of Biology in China

, Volume 1, Issue 4, pp 381–388 | Cite as

A comparison of the genetic diversity in Dipteronia sinensis Oliv. and Dipteronia dyeriana Henry

  • Li Shan 
  • Qian Zengqiang 
  • Cai Yuliang 
  • Zhao Guifang 
Research Article

Abstract

Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity.

Keywords

Dipteronia sinensis Oliv Dipteronia dyeriana Henry RAPD genetic diversity comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert P., Lumaret R., Digiusto F., Population structure inferred from allozyme analysis in the clonal herb, Fragaria chiloensis (Rosaceae). American Journal of Botany, 1993, 80: 1 002–1 006CrossRefGoogle Scholar
  2. Cui, J. Z., Zu Y. G., Nie J. L., Wang G. L., Genetic differentiation of Leymus Shinensis populations in Songnen grassland. Bulletin of Botanica Research, 2001, 21: 116–215 [崔继哲, 祖元刚, 聂江力, 王桂玲, 羊草种群遗传分化的 RAPD 分析 I: 扩增片段频率的变化. 植物研究, 2001, 21: 116–215]Google Scholar
  3. Dong, Y. C., Biodiversity and the Genetic Diversity Study of Crop. Variety Resource of Plant, 1995, 1–5 [董玉琛, 生物多样性及作物遗传多样性检测. 作物品种资源, 1995, 1–5]Google Scholar
  4. Excoffier L., Analysis of Molecular Variance (AMOVA) Version 1.5. University of Geneva: Genetics and Biometry Laboratory, 1993.Google Scholar
  5. Fang W. P., Flora reipublicae popularis sinicae. Beijing: Science Press, 1981Google Scholar
  6. Fu Y. L., Qian J., Zhang M. Y., Molecular-ecology study on sub-population of wild soybeans within Jinhua district. Journal of Fudan University, 1999, 38: 584–586 [府宇雷, 钱吉, 张美云, 金华地区野生大豆小种群的分子生态学研究. 复旦大学学报, 1999, 38: 584–586]Google Scholar
  7. Ge S., Hong D.Y., Principles and methodologies of biodiversity studies. Beijing: Chinese Science and Technology Press. 1994, 123–140 [葛颂, 洪德元, 生物多样性研究的原理与方法. 北京: 中国科学技术出版社, 1994, 123–140]Google Scholar
  8. Ge S., Hong D. Y., Studies of morphological and allozyme variation of the endangered Adenophora lobophylla and its widespread congener A. potaninii. Acta Genetica Sinica, 1999, 26: 410–417 [葛颂, 洪德元, 濒危物种裂叶沙参及其近缘广布种泡沙参的遗传多样性研究. 遗传学报 1999, 26: 410–417]Google Scholar
  9. Godt M. J., Walker J., Hamrick J. L., Genetic diversity in the endangered lily Harperocallis flava and a close relative, Tofieldia racemosa. Conserv. Biol., 1997, 11: 361–366CrossRefGoogle Scholar
  10. Gu S. H., Kong Y., Zhu D. L., Geng Z. C., Tan J. Z., A study of genetic polymorphism of isozymes in natural populations of Drosophila virilis in east China. Acta Genetica Sinica, 1992, 19: 228–235 [顾少华, 孔原, 朱定良, 庚镇 城, 谈家桢, 华东地区黑果蝇自然群体同工酶遗传多态的研究. 遗传学报, 1992, 19: 228–235]PubMedGoogle Scholar
  11. Hamrick J. L., Godt M. J. W., Murawski D. A., Correlations between species traits and allozyme diversity: implication for conservation biology. in: Falk D. A., Holsinger K. E., eds., Genetics and Conservation of Rare Plants. Oxford: Oxford University Press, 1991, 75–86Google Scholar
  12. Hickey R. J., Vincent M. A., Gutmann S. I., Genetic variation in running buffalos clover Trifolium soloniferum, Fabaceae. Conservation Biology, 1991, 5: 309–316CrossRefGoogle Scholar
  13. Hu S. Y., The metasequoia flora and its phytogeographic singnificance. Journal Arnold Arlor, 1980, 61: 41–04Google Scholar
  14. Karron J. D., Linhart Y. B., Chaulk C. A., Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Amer. J. Bot., 1988, 75: 1114–1119CrossRefGoogle Scholar
  15. Lang P. and Huang H. W., Genetic diversity and geographic variation innatural populations of the endemic Castanea species in China. Acta Botanica Sinica, 1999, 41: 651–657 [郎萍, 黄宏文, 栗属中国特有种居群的遗传多样性及地域差异. 植物学报, 1999, 41: 651–657]Google Scholar
  16. Li S., Cai Y. L., Qian Z. Q., Zhao G. F., Researches on the relationship between the morphological and genetic variations of Dipteronia dyeriana Henry (Aceraceae). Acta Ecologica Sinica, 2004, 24: 925–931 [李珊, 蔡宇良, 钱增强, 赵桂仿, 云南金钱槭形态变异与遗传变异的相关性研究. 生态学报, 2004, 24: 925–931]Google Scholar
  17. Li S., Cai Y. L., Xu L., Zhao G. F., Morphological Differentiation of Samaras and Seeds of Dipteronia dyeriana Henry (Aceraceae). Acta Botanica Yunnanica, 2003, 25: 589–595 [李珊, 蔡宇良, 徐莉, 赵桂仿, 云南金钱槭果实、 种子形态分化研究. 云南植物研究, 2003, 25: 589–595]Google Scholar
  18. Li X. D., Huang H. W., Li J. Q., Genetic diversity of the relict plant Metasequoia glyptostroboides. Biodiversity Science, 2003, 11: 100–108 [李晓东, 黄宏文, 李建强, 孑遗植物水杉的遗传多样性研究. 生物多样性, 2003, 11: 100–108]Google Scholar
  19. Liu S. E., Climatic changes and plants migration. In: Selected works of Liu Shen’e. Beijing: Science Press, 1985Google Scholar
  20. Liu Z. L., Li S., Yan G. Q., Genetic structure and intrasoecific genetic polymorphisms in natural populations of Psathyrostachys huashanica. Acta Genetica Sinica, 2001, 28: 769–775 [刘占林, 李珊, 阎桂琴, 华山新麦草自然居群的遗传结构和种内遗传多态性研究. 遗传学报, 2001, 28: 769–775]PubMedGoogle Scholar
  21. Lu W. D., SPSS for Windows. Beijing: Publishing House of Electronics Industry, 2000Google Scholar
  22. Maile, C. and Norman C., Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium nvar.vineum (Polygonaceae). Conservation Genetics, 2003, 4: 337–352CrossRefGoogle Scholar
  23. Robert W., Jinzhong F., Darlene E., Thales D., Ermi Z., Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. Molecular Ecology, 2000, 1539–1547Google Scholar
  24. Sarfer, General principle of Plant geography. Beijing: Higher Education Press, 1958Google Scholar
  25. Swenson S. M., Allan G. J., Howe M., Genetic analysis of the endangered island endemic Malacothamnus fasciculatus (Nutt.) Greene var. nesiotic (Rob.) Kearn (Malvaceae). Conservation Biology, 1995, 9: 404–415CrossRefGoogle Scholar
  26. Tian X., Guo Z. H., Li D. Z., Phylogeny of Aceraceae based on ITS and trnL-F data sets. Acta Botanica Sinica, 2002, 44: 714–724 [田欣, 郭振华, 李德铢, 基于 ITS 与 trnL-F 序列探 讨槭树科的系统发育. 植物学报, 2002, 44: 714–724]Google Scholar
  27. Vandewoestijne S. and Baguette M., The genetic structure of endangered populations in the Cranberry Fritillary, Boloria aquilonaris (Lepidoptera, Nvmphalidae): RAPD vs. allozymes. Heredity, 2002, 89: 439–445PubMedCrossRefGoogle Scholar
  28. Waller D. M., O’Malley D. M., Gawler S. C., Genetic variation in the extreme endemic, Pedicularis furbishiae (Scrophulariaceae). Conservation Biology, 1987, 1: 335–340CrossRefGoogle Scholar
  29. Wei W., Wang H. X., Hu Z. A., Primary studies on molecular ecology of Caragana spp.popolations distributed over maowusu sandy grasslang: from RAPD data. Acta Ecologica Sinica, 1999, 19: 16–22 [魏伟, 王洪新, 胡志昂, 毛乌素沙地柠条群体分子生态学初步研究: RAPD 证据. 生态学报, 1999, 19: 16–22]Google Scholar
  30. Yeh F. C. and Yang R., POPGENE vl. 31. download from http://www.ualberta.ca
  31. Ying J. S. and Zhang Y. L., Endemic genus of Chinese spermatophyte. Beijing: Science Press, 1994Google Scholar
  32. Zhao A. M., Liu Z. M., Kang X. Y., Zhou S.L., Allozyme variation in Sophora moorcroftiana, an endemic species of Tibet, China. Biodiversity Science, 2003, 11: 91–99 [赵阿曼, 刘志民, 康向阳, 周世良, 西藏特有植物砂生槐天然居群遗传多样性研究. 生物多样性, 2003, 11: 91–99]Google Scholar
  33. Zhao L. F., Li S., Pan Y., Population differentiation of Psathyrostachys huashanica along an altitudinal gradient detected by random amplified polymorphic DNA. Acta Bot. Boreal-Occident. Sin., 2001, 21: 391–400 [赵利锋, 李珊, 潘莹, 华山新麦草自然居群沿海拔梯度的的遗传分化. 西北植物学报, 2001, 21: 391–400]Google Scholar
  34. Zhang Y. J. and Yang C., Comparative allozyme and RAPD population genetic diversity in a endemic plant species, Tetraena mongolica Maxim(Zygophyllaceae), in ORDS plateau. Acta Scientiarum Naturalium Universitatis NeiMongol, 2003, 34: 160–165 [张颖娟, 杨持, 鄂尔多斯特有种四合木种群遗传多样性的等位酶和 RAPD 比较研究. 内蒙古大学学报, 2003, 34: 160–165]Google Scholar
  35. Zhou S. L., Zhang F., Wang Z. R., Hong D. Y., Genetic diversity of mosla hangchouensis and M. chinensis (Labiatae). Acta Genetica Sinica, 1998, 25: 173–180 [周世良, 张方, 王中仁, 洪德元, 杭州石荠苎和石香薷的遗传多样性研究. 遗传学报, 1998, 25: 173–180]Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  • Li Shan 
    • 1
    • 2
  • Qian Zengqiang 
    • 1
  • Cai Yuliang 
    • 1
  • Zhao Guifang 
    • 1
  1. 1.Biodiversity Research Center of Qinling Mts, College of Life ScienceNorthwest UniversityXi’anChina
  2. 2.Institute of Bioresource and Applied Technology, School of Life Sciences and TechnologyTongji UniversityShanghaiChina

Personalised recommendations