Arkiv för Matematik

, Volume 49, Issue 2, pp 383–399

Extremal ω-plurisubharmonic functions as envelopes of disc functionals

Article

Abstract

For each closed, positive (1,1)-current ω on a complex manifold X and each ω-upper semicontinuous function φ on X we associate a disc functional and prove that its envelope is equal to the supremum of all ω-plurisubharmonic functions dominated by φ. This is done by reducing to the case where ω has a global potential. Then the result follows from Poletsky’s theorem, which is the special case ω=0. Applications of this result include a formula for the relative extremal function of an open set in X and, in some cases, a description of the ω-polynomial hull of a set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branker, M. and Stawiska, M., Weighted pluripotential theory on compact Kähler manifolds, Ann. Polon. Math.95 (2009), 163–177. MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Demailly, J.-P., Complex Analytic and Algebraic Geometry, Online book, 2009. http://www-fourier.ujf-grenoble.fr/~demailly/books.html
  3. 3.
    Dinew, S., Cegrell classes on compact Kähler manifolds, Ann. Polon. Math.91 (2007), 179–195. MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Guedj, V., Approximation of currents on complex manifolds, Math. Ann.313 (1999), 437–474. MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Guedj, V. and Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal.15 (2005), 607–639. MathSciNetMATHGoogle Scholar
  6. 6.
    Guedj, V. and Zeriahi, A., The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal.250 (2007), 442–482. MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Harvey, F. R. and Lawson, J. H. B., Projective hulls and the projective Gelfand transform, Asian J. Math.10 (2006), 607–646. MathSciNetMATHGoogle Scholar
  8. 8.
    Hörmander, L., Notions of Convexity, Birkhäuser, Boston, MA, 1994. MATHGoogle Scholar
  9. 9.
    Klimek, M., Pluripotential Theory, London Mathematical Society Monographs 6, Oxford University Press, New York, 1991. MATHGoogle Scholar
  10. 10.
    Kołodziej, S., The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J.52 (2003), 667–686. MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lárusson, F. and Sigurdsson, R., Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math.501 (1998), 1–39. MathSciNetMATHGoogle Scholar
  12. 12.
    Lárusson, F. and Sigurdsson, R., Plurisubharmonicity of envelopes of disc functionals on manifolds, J. Reine Angew. Math.555 (2003), 27–38. MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lárusson, F. and Sigurdsson, R., Siciak–Zahariuta extremal functions and polynomial hulls, Ann. Polon. Math.91 (2007), 235–239. MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Poletsky, E., Plurisubharmonic functions as solutions of variational problems, in Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Part 1, pp. 163–171, Amer. Math. Soc., Providence, RI, 1991. Google Scholar
  15. 15.
    Poletsky, E., Holomorphic currents, Indiana Univ. Math. J.42 (1993), 85–144. MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rosay, J.-P., Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J.52 (2003), 157–169. MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Siu, Y. T., Every Stein subvariety admits a Stein neighborhood, Invent. Math.38 (1976/77), 89–100. MathSciNetCrossRefGoogle Scholar
  18. 18.
    Spivak, M., A Comprehensive Introduction to Differential Geometry. Vol. I, Publish or Perish, Wilmington, DE, 1979. MATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2010

Authors and Affiliations

  1. 1.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations