Arkiv för Matematik

, Volume 45, Issue 2, pp 297–325 | Cite as

Riemannian geometry on the diffeomorphism group of the circle

  • Jonatan LenellsEmail author


The topological group \(\mathcal{D}^k(\mathbb{S})\) of diffeomorphisms of the unit circle \(\mathbb{S}\) of Sobolev class H k , for k large enough, is a Banach manifold modeled on the Hilbert space \(H^k(\mathbb{S})\). In this paper we show that the H 1 right-invariant metric obtained by right-translation of the H 1 inner product on \(T_{\rm id}\mathcal{D}^k(\mathbb{S})\simeq H^k(\mathbb{S})\) defines a smooth Riemannian metric on \(\mathcal{D}^k(\mathbb{S})\), and we explicitly construct a compatible smooth affine connection. Once this framework has been established results from the general theory of affine connections on Banach manifolds can be applied to study the exponential map, geodesic flow, parallel translation, curvature etc. The diffeomorphism group of the circle provides the natural geometric setting for the Camassa–Holm equation – a nonlinear wave equation that has attracted much attention in recent years – and in this context it has been remarked in various papers how to construct a smooth Riemannian structure compatible with the H 1 right-invariant metric. We give a self-contained presentation that can serve as a detailed mathematical foundation for the future study of geometric aspects of the Camassa–Holm equation.


Banach Space Euler Equation Covariant Derivative Riemannian Geometry Shallow Water Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319–361.Google Scholar
  2. 2.
    Burgers, J., The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974.zbMATHGoogle Scholar
  3. 3.
    Camassa, R. and Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661–1664.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Constantin, A., On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations 141 (1997), 218–235.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Constantin, A., On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352–363.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000), 321–362.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Constantin, A. and Escher, J., Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475–504.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Constantin, A. and Escher, J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75–91.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Constantin, A., Kappeler, T., Kolev, B. and Topalov, P., On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom. 31 (2007), 155–180.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Constantin, A. and Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35 (2002), R51–R79.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Constantin, A. and Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787–804.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Constantin, A. and Kolev, B., Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109–122.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Constantin, A. and McKean, H. P., A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949–982.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ebin, D. G. and Marsden, J., Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. 92 (1970), 102–163.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–222.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Holm, D. D., Kouranbaeva, S., Marsden, J. E., Ratiu, T. and Shkoller, S., A nonlinear analysis of the averaged Euler equations, Arnold Festschrift Vol. 2, Preprint, 1999. arXiv:chao-dyn/9903036.Google Scholar
  17. 17.
    Hunter, J. K. and Saxton, R., Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), 1498–1521.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Iorio, R. J. J. and Iorio, V. d. M., Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics 70, Cambridge University Press, Cambridge, 2001.zbMATHGoogle Scholar
  19. 19.
    Keller, H. H., Differential Calculus in Locally Convex Spaces, Lecture Notes in Mathematics 417, Springer, Berlin–Heidelberg, 1974.zbMATHGoogle Scholar
  20. 20.
    Kouranbaeva, S., The Camassa–Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (1999), 857–868.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Lang, S., Differential and Riemannian Manifolds, Graduate Texts in Mathematics 160, Springer, Berlin–Heidelberg, 1995.zbMATHGoogle Scholar
  22. 22.
    Lenells, J., Traveling wave solutions of the Camassa–Holm equation, J. Differential Equations 217 (2005), 393–430.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, Texts in Applied Mathematics 17, Springer, Berlin–Heidelberg, 1999.zbMATHGoogle Scholar
  24. 24.
    McKean, H. P., Breakdown of the Camassa–Holm equation, Comm. Pure Appl. Math. 57 (2004), 416–418.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Misiołek, G., A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys. 24 (1998), 203–208.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Omori, H., Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs 158, American Mathematical Society, Providence, RI, 1997.zbMATHGoogle Scholar
  27. 27.
    Ovsienko, V. Y. and Khesin, B. A., The super Korteweg–de Vries equation as an Euler equation, Funktsional. Anal. i Prilozhen. 21:4 (1987), 81–82 (Russian). English transl.: Functional Anal. Appl. 21 (1988), 329–331.zbMATHMathSciNetGoogle Scholar
  28. 28.
    Shkoller, S., Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics, J. Funct. Anal. 160 (1998), 337–365.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2007

Authors and Affiliations

  1. 1.Department of MathematicsLund UniversityLundSweden

Personalised recommendations