Acta Mathematica

, Volume 213, Issue 1, pp 63–106 | Cite as

Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry

  • Simon DonaldsonEmail author
  • Song Sun


We prove a general result about the geometry of holomorphic line bundles over Kähler manifolds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson M. T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc., 2, 455–490 (1989)MathSciNetCrossRefGoogle Scholar
  2. Bando S., Kasue A.& Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math., 97, 313–349 (1989)Google Scholar
  3. Błocki Z.: Interior regularity of the complex Monge–Ampère equation in convex domains. Duke Math. J. 105, 167–181 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cheeger, J.,Degeneration of Riemannian Metrics under Ricci Curvature Bounds. Lezioni Fermiane. Scuola Normale Superiore, Pisa, 2001.Google Scholar
  5. Cheeger, J., Degeneration of Einstein metrics and metrics with special holonomy, in Surveys in Differential Geometry , Vol. 8 (Boston, MA, 2002), pp. 29–73. Int. Press, Somerville, MA, 2003.Google Scholar
  6. Cheeger J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal., 13, 20–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 406–480 (1997)MathSciNetzbMATHGoogle Scholar
  8. Cheeger J., Colding T. H., Tian G.: On the singularities of spaces with bounded Ricci curvature, pp. 873–914. (2002)Google Scholar
  9. Chen X., Weber B.: Moduli spaces of critical Riemannian metrics with \({L^{n/2}}\) norm curvature bounds. Adv. Math. 226, 1307–1330 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Colding T. H., Naber A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)MathSciNetCrossRefGoogle Scholar
  11. Croke C. B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. 13, 419–435 (1980)MathSciNetzbMATHGoogle Scholar
  12. Dai X., Liu K., Ma X.: On the asymptotic expansion of Bergman kernel. J. Differential Geom. 72, 1–41 (2006)MathSciNetzbMATHGoogle Scholar
  13. Demailly J.-P., Estimations L 2 pour l’opérateur \({\bar\partial}\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup., 15 (1982), 457–511.Google Scholar
  14. Ding W. Y., Tian G.: Kähler–Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, 315–335 (1992)MathSciNetCrossRefGoogle Scholar
  15. Donaldson, S. K., Stability, birational transformations and the Kähler–Einstein problem, in Surveys in Differential Geometry, Vol. 17 (Bethlehem, PA, 2010), pp. 203–228. Int. Press, Boston, MA, 2012.Google Scholar
  16. Donaldson S. K.: b-stability and blow-ups. Proc. Edinb. Math. Soc. 57, 125–137 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Eyssidieux P., Guedj V., Zeriahi A.: Singular Kähler–Einstein metrics. J. Amer. Math. Soc. 22, 607–639 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Görtz, U. & Wedhorn, T.,Algebraic Geometry I. Advanced Lectures in Mathematics. Vieweg+Teubner, Wiesbaden, 2010.Google Scholar
  19. Griffiths, P. & Harris, J., Principles of Algebraic Geometry. Wiley-Interscience, New York, 1978.Google Scholar
  20. Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York–Heidelberg, 1977.Google Scholar
  21. Li, C., Kähler–Einstein Metrics and K-Stability. Ph.D. Thesis, Princeton University, Princeton, NJ. ProQuest LLC, Ann Arbor, MI, 2012.Google Scholar
  22. Ma, X. & Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, 254. Birkhäuser, Basel, 2007.Google Scholar
  23. Narasimhan, R., Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics, 25. Springer, Berlin–Heidelberg, 1966.Google Scholar
  24. Nijenhuis A., Woolf W. B.: Some integration problems in almost-complex and complex manifolds. Ann. of Math. 77, 424–489 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Ross J., Thomas R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. J. Differential Geom. 88, 109–159 (2011)MathSciNetzbMATHGoogle Scholar
  26. Shiffman B.: On the removal of singularities of analytic sets. Michigan Math. J. 15, 111–120 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Sibner L. M.: The isolated point singularity problem for the coupled Yang–Mills equations in higher dimensions. Math. Ann. 271, 125–131 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Székelyhidi, G., Filtrations and test-configurations. Preprint, 2011.arXiv:1111.4986 [math.AG].
  29. Tian G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Tian, G., Kähler–Einstein metrics on algebraic manifolds, in Proceedings of the International Congress of Mathematicians (Kyoto, 1990), Vol. I, pp. 587–598. Math. Soc. Japan, Tokyo, 1991.Google Scholar
  31. Tian, G., Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry, Progress in Mathematics, 297, pp. 119–159. Springer, New York, 2012.Google Scholar
  32. Wehrheim, K., Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. Eur. Math. Soc., Zürich, 2004.Google Scholar

Copyright information

© Institut Mittag-Leffler 2014

Authors and Affiliations

  1. 1.Department of MathematicsImperial CollegeLondonU.K

Personalised recommendations