Acta Mathematica

, Volume 209, Issue 1, pp 29–82 | Cite as

Constructing the extended Haagerup planar algebra

  • Stephen Bigelow
  • Emily Peters
  • Scott Morrison
  • Noah Snyder
Article

Abstract

We construct a new subfactor planar algebra, and as a corollary a new subfactor, with the ‘extended Haagerup’ principal graph pair. This completes the classification of irreducible amenable subfactors with index in the range (\( {4},{3} + \sqrt {{3}} \)), which was initiated by Haagerup in 1993. We prove that the subfactor planar algebra with these principal graphs is unique. We give a skein-theoretic description, and a description as a subalgebra generated by a certain element in the graph planar algebra of its principal graph. In the skein-theoretic description there is an explicit algorithm for evaluating closed diagrams. This evaluation algorithm is unusual because intermediate steps may increase the number of generators in a diagram. This is the published version of arXiv:0909.4099 [math.OA].

Keywords

planar algebras subfactors skein theory principal graphs 

2000 Math. Subject Classification

primary 46L37 secondary 18D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asaeda, M., Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math., 18 (2007), 191–202.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Asaeda, M. & Haagerup, U., Exotic subfactors of finite depth with Jones indices \( \left( {5 + \sqrt {{13}} } \right)/2 \) and \( \left( {5 + \sqrt {{17}} } \right)/2 \). Comm. Math. Phys., 202 (1999), 1–63.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Asaeda, M. & Yasuda, S., On Haagerup’s list of potential principal graphs of subfactors. Comm. Math. Phys., 286 (2009), 1141–1157.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bigelow, S., Skein theory for the ADE planar algebras. J. Pure Appl. Algebra, 214 (2010), 658–666.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bion-Nadal, J., An example of a subfactor of the hyperfinite II1 factor whose principal graph invariant is the Coxeter graph E 6, in Current Topics in Operator Algebras (Nara, 1990), pp. 104–113. World Scientific, River Edge, NJ, 1991.Google Scholar
  6. 6.
    Bisch, D., An example of an irreducible subfactor of the hyperfinite II1 factor with rational, noninteger index. J. Reine Angew. Math., 455 (1994), 21–34.MathSciNetMATHGoogle Scholar
  7. 7.
    — Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, in Operator Algebras and their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, pp. 13–63. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  8. 8.
    — Principal graphs of subfactors with small Jones index. Math. Ann., 311 (1998), 223–231.Google Scholar
  9. 9.
    — Subfactors and planar algebras, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 775–785. Higher Ed. Press, Beijing, 2002.Google Scholar
  10. 10.
    Bisch, D., Nicoara, R. & Popa, S. T., Continuous families of hyperfinite subfactors with the same standard invariant. Internat. J. Math., 18 (2007), 255–267.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    de Boer, J. & Goeree, J., Markov traces and II1 factors in conformal field theory. Comm. Math. Phys., 139 (1991), 267–304.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Connes, A., Noncommutative Geometry. Academic Press, San Diego, CA, 1994.Google Scholar
  13. 13.
    Coste, A. & Gannon, T., Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B, 323 (1994), 316–321.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Doplicher, S. & Roberts, J. E., A new duality theory for compact groups. Invent. Math., 98 (1989), 157–218.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Etingof, P., Nikshych, D. & Ostrik, V., On fusion categories. Ann. of Math., 162 (2005), 581–642.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Frenkel, I. B. & Khovanov, M. G., Canonical bases in tensor products and graphical calculus for Uq (sl). Duke Math. J., 87 (1997), 409–480.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Guionnet, A., Jones, V. F. R. & Shlyakhtenko, D., Random matrices, free probability, planar algebras and subfactors, in Quanta of Maths, Clay Math. Proc., 11, pp. 201–239. Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  18. 18.
    Haagerup, U., Principal graphs of subfactors in the index range \( 4 < \left[ {M:N} \right] < 3 + \sqrt {2} \), in Subfactors (Kyuzeso, 1993), pp. 1–38. World Scientific, River Edge, NJ, 1994.Google Scholar
  19. 19.
    Han, R., A Construction of the “2221” Planar Algebra. Ph.D. Thesis, University of California, Riverside, CA, 2010.Google Scholar
  20. 20.
    Hong, S.-M., Rowell, E. & Wang, Z., On exotic modular tensor categories. Commun. Contemp. Math., 10 (2008), 1049–1074.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ikeda, K., Numerical evidence for flatness of Haagerup’s connections. J. Math. Sci. Univ. Tokyo, 5 (1998), 257–272.MathSciNetMATHGoogle Scholar
  22. 22.
    Izumi, M., Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci., 27 (1991), 953–994.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    — On flatness of the Coxeter graph E 8. Pacific J. Math., 166 (1994), 305–327.Google Scholar
  24. 24.
    — The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys., 13 (2001), 603–674.Google Scholar
  25. 25.
    Izumi, M., Jones, V. F. R., Morrison, S. & Snyder, N., Subfactors of index less than 5, part 3: quadruple points. To appear in Comm. Math. Phys.Google Scholar
  26. 26.
    Jones, V. F. R., Index for subfactors. Invent. Math., 72 (1983), 1–25.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    — Braid groups, Hecke algebras and type II1 factors, in Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, pp. 242–273. Longman, Harlow, 1986.Google Scholar
  28. 28.
    — The planar algebra of a bipartite graph, in Knots in Hellas ’98 (Delphi), Ser. Knots Everything, 24, pp. 94–117. World Scientific, River Edge, NJ, 2000.Google Scholar
  29. 29.
    — The annular structure of subfactors, in Essays on Geometry and Related Topics, Vol. 2, Monogr. Enseign. Math., 38, pp. 401–463. Enseignement Math., Geneva, 2001.Google Scholar
  30. 30.
    — Two subfactors and the algebraic decomposition of bimodules over II1 factors. Acta Math. Vietnam., 33 (2008), 209–218.Google Scholar
  31. 31.
    — Planar algebras, I. Preprint, 1999. arXiv:math/9909027 [math.QA].
  32. 32.
    — Quadratic tangles in planar algebras. To appear in Duke Math. J.Google Scholar
  33. 33.
    Jones, V. F. R. & Penneys, D., The embedding theorem for finite depth subfactor planar algebras. Quantum Topol., 2 (2011), 301–337.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Jones, V. F. R., Shlyakhtenko, D. & Walker, K., An orthogonal approach to the subfactor of a planar algebra. Pacific J. Math., 246 (2010), 187–197.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Joyal, A. & Street, R., The geometry of tensor calculus. I. Adv. Math., 88 (1991), 55–112.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    — An introduction to Tannaka duality and quantum groups, in Category Theory (Como, 1990), Lecture Notes in Math., 1488, pp. 413–492. Springer, Berlin, 1991.Google Scholar
  37. 37.
    Kauffman, L. H., State models and the Jones polynomial. Topology, 26 (1987), 395–407.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Kawahigashi, Y., On flatness of Ocneanu’s connections on the Dynkin diagrams and classification of subfactors. J. Funct. Anal., 127 (1995), 63–107.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kodiyalam, V. & Sunder, V. S., From subfactor planar algebras to subfactors. Internat. J. Math., 20 (2009), 1207–1231.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kuperberg, G., Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180 (1996), 109–151.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Morrison, S., A formula for the Jones-Wenzl projections. Unpublished manuscript. Available at http://tqft.net/math/JonesWenzlProjections.pdf.
  42. 42.
    Morrison, S., Penneys, D., Peters, E. & Snyder, N., Subfactors of index less than 5, part 2: triple points. Internat. J. Math., 23 (2012), 1250016, 33 pp.Google Scholar
  43. 43.
    Morrison, S., Peters, E. & Snyder, N., Skein theory for the D2n planar algebras. J. Pure Appl. Algebra, 214 (2010), 117–139.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Morrison, S. & Snyder, N., Non-cyclotomic fusion categories. To appear in Trans. Amer. Math. Soc.Google Scholar
  45. 45.
    — Subfactors of index less than 5, part 1: the principal graph odometer. To appear in Comm. Math. Phys.Google Scholar
  46. 46.
    Morrison, S. & Walker, K., The graph planar algebra embedding theorem. Unpublished manuscript. Available at http://tqft.net/papers/gpa.pdf.
  47. 47.
    Ocneanu, A., Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications, Vol. 2, London Math. Soc. Lecture Note Ser., 136, pp. 119–172. Cambridge Univ. Press, Cambridge, 1988.Google Scholar
  48. 48.
    — Chirality for operator algebras, in Subfactors (Kyuzeso, 1993), pp. 39–63. World Scientific, River Edge, NJ, 1994.Google Scholar
  49. 49.
    — The classification of subgroups of quantum SU(N ), in Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., 294, pp. 133–159. Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  50. 50.
    Penneys, D. & Tener, J. E., Subfactors of index less than 5, part 4: vines. Internat. J. Math., 23 (2012), 1250017, 18 pp.Google Scholar
  51. 51.
    Penrose, R., Applications of negative dimensional tensors, in Combinatorial Mathematics and its Applications (Oxford, 1969), pp. 221–244. Academic Press, London, 1971.Google Scholar
  52. 52.
    Peters, E., A planar algebra construction of the Haagerup subfactor. Internat. J. Math., 21 (2010), 987–1045.MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Popa, S. T., Classification of subfactors: the reduction to commuting squares. Invent. Math., 101 (1990), 19–43.MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    — Subfactors and classification in von Neumann algebras, in Proceedings of the International Congress of Mathematicians, Vol. II (Kyoto, 1990), pp. 987–996. Math. Soc. Japan, Tokyo, 1991.Google Scholar
  55. 55.
    — Classification of amenable subfactors of type II. Acta Math., 172 (1994), 163–255.Google Scholar
  56. 56.
    — An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math., 120 (1995), 427–445.Google Scholar
  57. 57.
    Popa, S. T. & Shlyakhtenko, D., Universal properties of L(F ) in subfactor theory. Acta Math., 191 (2003), 225–257.MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Reshetikhin, N. & Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103 (1991), 547–597.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Reznikoff, S. A., Coefficients of the one- and two-gap boxes in the Jones-Wenzl idempotent. Indiana Univ. Math. J., 56 (2007), 3129–3150.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Temperley, H. N. V. & Lieb, E. H., Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, 18. de Gruyter, Berlin, 1994.Google Scholar
  62. 62.
    Turaev, V. G. & Viro, O. Y., State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31 (1992), 865–902.MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Vaes, S., Explicit computations of all finite index bimodules for a family of II1 factors. Ann. Sci. Éc. Norm. Supér., 41 (2008), 743–788.MathSciNetMATHGoogle Scholar
  64. 64.
    Wenzl, H., On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 5–9.MathSciNetMATHGoogle Scholar
  65. 65.
    — On the structure of Brauer’s centralizer algebras. Ann. of Math., 128 (1988), 173–193.Google Scholar

Copyright information

© Institut Mittag-Leffler 2012

Authors and Affiliations

  • Stephen Bigelow
    • 1
  • Emily Peters
    • 2
  • Scott Morrison
    • 3
  • Noah Snyder
    • 4
  1. 1.Department of MathematicsUniversity of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Mathematical Sciences InstituteAustralian National UniversityActonAustralia
  4. 4.Department of MathematicsIndiana University, BloomingtonBloomingtonUSA

Personalised recommendations