Acta Mathematica

, Volume 206, Issue 2, pp 205–243 | Cite as

On locally constructible spheres and balls

Article

Abstract

Durhuus and Jonsson (1995) introduced the class of “locally constructible” (LC) 3-spheres and showed that there are only exponentially many combinatorial types of simplicial LC 3-spheres. Such upper bounds are crucial for the convergence of models for 3D quantum gravity.

We characterize the LC property for d-spheres (“the sphere minus a facet collapses to a (d−2)-complex”) and for d-balls. In particular, we link it to the classical notions of collapsibility, shellability and constructibility, and obtain hierarchies of such properties for simplicial balls and spheres. The main corollaries from this study are:

– Not all simplicial 3-spheres are locally constructible. (This solves a problem by Durhuus and Jonsson.)

There are only exponentially many shellable simplicial 3-spheres with given number of facets. (This answers a question by Kalai.)

– All simplicial constructible 3-balls are collapsible. (This answers a question by Hachimori.)

– Not every collapsible 3-ball collapses onto its boundary minus a facet. (This property appears in papers by Chillingworth and Lickorish.)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alon, N., The number of polytopes, configurations and real matroids. Mathematika, 33 (1986), 62–71.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Ambjørn, J., Boulatov, D. V., Kawamoto, N. & Watabiki, Y., Recursive sampling simulations of 3D gravity coupled to scalar fermions. Phys. Lett. B, 480 (2000), 319–330.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Ambjørn, J., Durhuus, B. & Jonsson, T., Quantum Geometry. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1997.Google Scholar
  4. [4]
    Ambjørn, J. & Varsted, S., Three-dimensional simplicial quantum gravity. Nuclear Phys. B, 373 (1992), 557–577.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Aval, J. C., Multivariate Fuss–Catalan numbers. Discrete Math., 308 (2008), 4660–4669.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Bartocci, C., Bruzzo, U., Carfora, M. & Marzuoli, A., Entropy of random coverings and 4D quantum gravity. J. Geom. Phys., 18 (1996), 247–294.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Benedetti, B., Locally Constructible Manifolds. Ph.D. Thesis, Technische Universität Berlin, Berlin, 2010. http://opus.kobv.de/tuberlin/volltexte/2010/2519/.
  8. [8]
    — Collapses, products and LC manifolds. J. Combin. Theory Ser. A, 118 (2011), 586–590.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Bing, R. H., Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in Lectures on Modern Mathematics, Vol. II, pp. 93–128. Wiley, New York, 1964.Google Scholar
  10. [10]
    Björner, A., Topological methods, in Handbook of Combinatorics, Vol. 2, pp. 1819–1872. Elsevier, Amsterdam, 1995.Google Scholar
  11. [11]
    Catterall, S., Kogut, J. & Renken, R., Is there an exponential bound in fourdimensional simplicial gravity? Phys. Rev. Lett., 72 (1994), 4062–4065.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Cheeger, J., Critical points of distance functions and applications to geometry, in Geometric Topology: Recent Developments (Montecatini Terme, 1990), Lecture Notes in Math., 1504, pp. 1–38. Springer, Berlin–Heidelberg, 1991.Google Scholar
  13. [13]
    Chillingworth, D. R. J., Collapsing three-dimensional convex polyhedra. Math. Proc. Cambridge Philos. Soc., 63 (1967), 353–357. Correction in Math. Proc. Cambridge Philos. Soc., 88 (1980), 307–310.Google Scholar
  14. [14]
    Durhuus, B. & Jonsson, T., Remarks on the entropy of 3-manifolds. Nuclear Phys. B, 445 (1995), 182–192.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Ehrenborg, R. & Hachimori, M., Non-constructible complexes and the bridge index. European J. Combin., 22 (2001), 475–489.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Furch, R., Zur Grundlegung der kombinatorischen Topologie. Abh. Math. Sem. Univ. Hamburg, 3 (1923), 69–88.CrossRefGoogle Scholar
  17. [17]
    Goodman, J.E. & Pollack, R., There are asymptotically far fewer polytopes than we thought. Bull. Amer. Math. Soc., 14 (1986), 127–129.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Goodrick, R. E., Non-simplicially collapsible triangulations of In. Math. Proc. Cambridge Philos. Soc., 64 (1968), 31–36.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Gromov, M., Spaces and questions. Geom. Funct. Anal., 2000, Special Volume, Part I (2000), 118–161.Google Scholar
  20. [20]
    Grove, K., Petersen, P. V & Wu, J.Y., Geometric finiteness theorems via controlled topology. Invent. Math., 99 (1990), 205–213. Correction in Invent. Math., 104 (1991), 221–222.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Hachimori, M., Nonconstructible simplicial balls and a way of testing constructibility. Discrete Comput. Geom., 22 (1999), 223–230.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Combinatorics of Constructible Complexes. Ph.D. Thesis, Tokyo University, Tokyo, 2000.Google Scholar
  23. [23]
    — Decompositions of two-dimensional simplicial complexes. Discrete Math., 308 (2008), 2307–2312.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Simplicial complex library. Web archive, 2001. http://infoshako.sk.tsukuba.ac.jp/~HACHI/math/library/index eng.html.
  25. [25]
    Hachimori, M. & Shimokawa, K., Tangle sum and constructible spheres. J. Knot Theory Ramifications, 13 (2004), 373–383.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Hachimori, M. & Ziegler, G. M., Decompositons of simplicial balls and spheres with knots consisting of few edges. Math. Z., 235 (2000), 159–171.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Hamstrom, M.-E. & Jerrard, R.P., Collapsing a triangulation of a “knotted” cell. Proc. Amer. Math. Soc., 21 (1969), 327–331.MATHMathSciNetGoogle Scholar
  28. [28]
    Hog-Angeloni, C. & Metzler, W., Geometric aspects of two-dimensional complexes, in Two-Dimensional Homotopy and Combinatorial Group Theory, London Math. Soc. Lecture Note Ser., 197, pp. 1–50. Cambridge Univ. Press, Cambridge, 1993.CrossRefGoogle Scholar
  29. [29]
    Hudson, J. F. P., Piecewise Linear Topology. University of Chicago Lecture Notes. Benjamin, New York–Amsterdam, 1969.Google Scholar
  30. [30]
    Kalai, G., Many triangulated spheres. Discrete Comput. Geom., 3 (1988), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Kamei, S., Cones over the boundaries of nonshellable but constructible 3-balls. Osaka J. Math., 41 (2004), 357–370.MATHMathSciNetGoogle Scholar
  32. [32]
    Kawauchi, A., A Survey of Knot Theory. Birkhäuser, Basel, 1996.MATHGoogle Scholar
  33. [33]
    Klee, V. & Kleinschmidt, P., The d-step conjecture and its relatives. Math. Oper. Res., 12 (1987), 718–755.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Lee, C. W., Kalai’s squeezed spheres are shellable. Discrete Comput. Geom., 24 (2000), 391–396.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Lickorish, W.B. R., An unsplittable triangulation. Michigan Math. J., 18 (1971), 203–204.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    — Unshellable triangulations of spheres. European J. Combin., 12 (1991), 527–530.MATHMathSciNetGoogle Scholar
  37. [37]
    Lickorish, W. B. R. & Martin, J. M., Triangulations of the 3-ball with knotted spanning 1-simplexes and collapsible rth derived subdivisions. Trans. Amer. Math. Soc., 137 (1969), 451–458.MATHMathSciNetGoogle Scholar
  38. [38]
    Lutz, F. H., Small examples of nonconstructible simplicial balls and spheres. SIAM J. Discrete Math., 18 (2004), 103–109.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    Matoušek, J. & Nešetřil, J., Invitation to Discrete Mathematics. Oxford University Press, Oxford, 2009.MATHGoogle Scholar
  40. [40]
    Pfeifle, J. & Ziegler, G. M., Many triangulated 3-spheres. Math. Ann., 330 (2004), 829–837.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Provan, J. S. & Billera, L. J., Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res., 5 (1980), 576–594.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    Regge, T., General relativity without coordinates. Nuovo Cimento, 19 (1961), 558–571.CrossRefMathSciNetGoogle Scholar
  43. [43]
    Regge, T. & Williams, R. M., Discrete structures in gravity. J. Math. Phys., 41 (2000), 3964–3984.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Stanley, R. P., Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.Google Scholar
  45. [45]
    Tutte, W. T., A census of planar triangulations. Canad. J. Math., 14 (1962), 21–38.MATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    — On the enumeration of convex polyhedra. J. Combin. Theory Ser. B, 28 (1980), 105–126.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    Weingarten, D., Euclidean quantum gravity on a lattice. Nuclear Phys. B, 210 (1982), 229–245.CrossRefGoogle Scholar
  48. [48]
    Zeeman, E. C., Seminar on Combinatorial Topology. Institut des Hautes Études Scientifiques and University of Warwick, Paris–Coventry, 1966.Google Scholar
  49. [49]
    Ziegler, G. M., Lectures on Polytopes. Graduate Texts in Mathematics, 152. Springer, New York, 1995.Google Scholar
  50. [50]
    — Shelling polyhedral 3-balls and 4-polytopes. Discrete Comput. Geom., 19 (1998), 159–174.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2011

Authors and Affiliations

  1. 1.Institute of MathematicsFreie Universität BerlinBerlinGermany

Personalised recommendations