Acta Mathematica

, Volume 205, Issue 1, pp 189–197 | Cite as

Dimension of quasicircles

  • Stanislav SmirnovEmail author


We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k-quasicircle is at most 1+k 2.

2000 Math. Subject Classification

30C62 30C80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Astala, K., Area distortion of quasiconformal mappings. Acta Math., 173 (1994), 37–60.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Becker, J. & Pommerenke, C., On the Hausdorff dimension of quasicircles. Ann. Acad. Sci. Fenn. Ser. A I Math., 12 (1987), 329–333.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Prause, I., A remark on quasiconformal dimension distortion on the line. Ann. Acad. Sci. Fenn. Math., 32 (2007), 341–352.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Prause, I. & Smirnov, S., Quasisymmetric distortion spectrum. Preprint, 2009. arXiv:0910.4723v1 [math.CV].Google Scholar
  5. [5]
    Ruelle, D., Thermodynamic Formalism. Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley, Reading, MA, 1978.zbMATHGoogle Scholar
  6. [6]
    — Repellers for real analytic maps. Ergodic Theory Dynamical Systems, 2 (1982), 99–107.Google Scholar
  7. [7]
    Väläisä, J., Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, 229. Springer, Berlin–Heidelberg, 1971.Google Scholar

Copyright information

© Institut Mittag-Leffler 2010

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland

Personalised recommendations