Acta Mathematica

, Volume 204, Issue 1, pp 91–150 | Cite as

The mean field traveling salesman and related problems

  • Johan WästlundEmail author


The edges of a complete graph on n vertices are assigned i.i.d. random costs from a distribution for which the interval [0, t] has probability asymptotic to t as t→0 through positive values. In this so called pseudo-dimension 1 mean field model, we study several optimization problems, of which the traveling salesman is the best known. We prove that, as n→∞, the cost of the minimum traveling salesman tour converges in probability to a certain number, approximately 2.0415, which is characterized analytically.

Mathematics Subject Classifications (2000)

Primary 60K35 90C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Achlioptas, D., Naor, A. & Peres, Y., Rigorous location of phase transitions in hard optimization problems. Nature, 435 (2005), 759–764.CrossRefGoogle Scholar
  2. [2]
    Achlioptas, D. & Peres, Y., The threshold for random k-SAT is 2k log 2−O(k). J. Amer. Math. Soc., 17 (2004), 947–973.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Aldous, D., Asymptotics in the random assignment problem. Probab. Theory Related Fields, 93 (1992), 507–534.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    _____ The ζ(2) limit in the random assignment problem. Random Structures Algorithms, 18 (2001), 381–418.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    _____ Percolation-like scaling exponents for minimal paths and trees in the stochastic mean field model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 825–838.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Aldous, D. & Bandyopadhyay, A., A survey of max-type recursive distributional equations. Ann. Appl. Probab., 15 (2005), 1047–1110.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Aldous, D. & Percus, A. G., Scaling and universality in continuous length combinatorial optimization. Proc. Natl. Acad. Sci. USA, 100:20 (2003), 11211–11215.Google Scholar
  8. [8]
    Aldous, D. & Steele, J. M., The objective method: probabilistic combinatorial optimization and local weak convergence, in Probability on Discrete Structures, Encyclopaedia Math. Sci., 110, pp. 1–72. Springer, Berlin–Heidelberg, 2004.Google Scholar
  9. [9]
    Alm, S.E. & Sorkin, G. B., Exact expectations and distributions for the random assignment problem. Combin. Probab. Comput., 11 (2002), 217–248.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Bacci, S. & Miranda, E. N., The traveling salesman problem and its analogy with two-dimensional spin glasses. J. Stat. Phys., 56 (1989), 547–551.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Bandyopadhyay, A. & Gamarnik, D., Counting without sampling: asymptotics of the log-partition function for certain statistical physics models. Random Structures Algorithms, 33 (2008), 452–479.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Boettcher, S. & Percus, A., Nature’s way of optimizing. Artificial Intelligence, 119 (2000), 275–286.zbMATHCrossRefGoogle Scholar
  13. [13]
    Brunetti, R., Krauth, W., Mézard, M. & Parisi, G., Extensive numerical simulation of weighted matchings: total length and distribution of links in the optimal solution. Europhys. Lett., 14 (1991), 295–301.CrossRefGoogle Scholar
  14. [14]
    Buck, M. W., Chan, C. S. & Robbins, D. P., On the expected value of the minimum assignment. Random Structures Algorithms, 21 (2002), 33–58.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Cerf, N. J., Boutet de Monvel, J., Bohigas, O., Martin, O. C. & Percus, A. G., The random link approximation for the Euclidean traveling salesman problem. J. Physique, 7 (1997), 117–136.CrossRefGoogle Scholar
  16. [16]
    Coppersmith, D. & Sorkin, G. B., Constructive bounds and exact expectations for the random assignment problem. Random Structures Algorithms, 15 (1999), 113–144.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Frieze, A., On the value of a random minimum spanning tree problem. Discrete Appl. Math., 10 (1985), 47–56.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    _____ On random symmetric travelling salesman problems. Math. Oper. Res., 29 (2004), 878–890.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Guerra, F., Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233 (2003), 1–12.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    van der Hofstad, R., Hooghiemstra, G. & Van Mieghem, P., The weight of the shortest path tree. Random Structures Algorithms, 30 (2007), 359–379.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Karp, R. M., An upper bound on the expected cost of an optimal assignment, in Discrete Algorithms and Complexity (Kyoto, 1986), Perspect. Comput., 15, pp. 1–4. Academic Press, Boston, MA, 1987.Google Scholar
  22. [22]
    Kirkpatrick, S. & Toulouse, G., Configuration space analysis of travelling salesman problems. J. Physique, 46:8 (1985), 1277–1292.CrossRefMathSciNetGoogle Scholar
  23. [23]
    Krauth, W. & Mézard, M., The cavity method and the travelling salesman problem. Europhys. Lett., 8 (1989), 213–218.CrossRefGoogle Scholar
  24. [24]
    Linusson, S. & Wästlund, J., A proof of Parisi’s conjecture on the random assignment problem. Probab. Theory Related Fields, 128 (2004), 419–440.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Mézard, M. & Montanari, A., Information, Physics, and Computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009.Google Scholar
  26. [26]
    Mézard, M. & Parisi, G., Replicas and optimization. J. Physique, 46 (1985), 771–778.Google Scholar
  27. [27]
    _____ Mean-field equations for the matching and the travelling salesman problems. Europhys. Lett., 2 (1986), 913–918.CrossRefGoogle Scholar
  28. [28]
    _____ A replica analysis of the travelling salesman problem. J. Physique, 47 (1986), 1285–1296.CrossRefGoogle Scholar
  29. [29]
    _____ On the solution of the random link matching problems. J. Physique, 48 (1987), 1451–1459.CrossRefGoogle Scholar
  30. [30]
    Mézard, M., Parisi, G. & Virasoro, M. A., Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, 9. World Scientific, Teaneck, NJ, 1987.Google Scholar
  31. [31]
    Mézard, M., Parisi, G. & Zecchina, R., Analytic and algorithmic solutions of random satisfiability problems. Science, 297 (2002), 812.CrossRefGoogle Scholar
  32. [32]
    Nair, C., Proofs of the Parisi and Coppersmith–Sorkin Conjectures in the Finite Random Assignment Problem. Ph.D. Thesis, Stanford University, Stanford, CA, 2005.Google Scholar
  33. [33]
    Nair, C., Prabhakar, B. & Sharma, M., Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Structures Algorithms, 27 (2005), 413–444.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Parisi, G., A sequence of approximated solutions to the S–K model for spin glasses. J. Physique, 13 (1980), L–115.Google Scholar
  35. [35]
    _____ Spin glasses and optimization problems without replicas, in Le hasard et la matière (Les Houches, 1986), pp. 525–552. North-Holland, Amsterdam, 1987.Google Scholar
  36. [36]
    _____ A conjecture on random bipartite matching. Preprint, 1998. arXiv:cond-mat/9801176.Google Scholar
  37. [37]
    Percus, A. G., Voyageur de commerce et problèmes stochastiques associés. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, 1997.Google Scholar
  38. [38]
    Percus, A. G. & Martin, O. C., Finite size and dimensional dependence in the Euclidean traveling salesman problem. Phys. Rev. Lett., 76 (1996), 1188–1191.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    _____ The stochastic traveling salesman problem: Finite size scaling and the cavity prediction. J. Stat. Phys., 94 (1999), 739–758.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Sherrington, D. & Kirkpatrick, S., Solvable model of a spin glass. Phys. Rev. Lett., 35 (1975), 1792–1796.CrossRefGoogle Scholar
  41. [41]
    Sourlas, N., Statistical mechanics and the travelling salesman problem. Europhys. Lett., 2 (1986), 919–923.CrossRefGoogle Scholar
  42. [42]
    Talagrand, M., Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., 81 (1995), 73–205.zbMATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    ____ Spin Glasses: A Challenge for Mathematicians. Modern Surveys in Mathematics, 46. Springer, Berlin–Heidelberg, 2003.Google Scholar
  44. [44]
    ____ The Parisi formula. Ann. of Math., 163 (2006), 221–263.zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    Vannimenus, J. & Mézard, M., On the statistical mechanics of optimization problems of the travelling salesman type. J. Physique, 45 (1984), 1145–1153.CrossRefGoogle Scholar
  46. [46]
    Walkup, D. W., On the expected value of a random assignment problem. SIAM J. Comput., 8 (1979), 440–442.zbMATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    Wästlund, J., A proof of a conjecture of Buck, Chan, and Robbins on the expected value of the minimum assignment. Random Structures Algorithms, 26 (2005), 237–251.zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    _____ The variance and higher moments in the random assignment problem. Linköping Studies in Mathematics, 8. Preprint, 2005.Google Scholar
  49. [49]
    Weitz, D., Counting independent sets up to the tree threshold, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 140–149. ACM, New York, 2006.Google Scholar

Copyright information

© Institut Mittag-Leffler 2010

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of TechnologyGothenburgSweden

Personalised recommendations