Acta Mathematica

, Volume 198, Issue 2, pp 231–298

Discrete Radon transforms and applications to ergodic theory

  • Alexandru D. Ionescu
  • Elias M. Stein
  • Akos Magyar
  • Stephen Wainger
Article

Abstract

We prove Lp boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and Lp ergodic theorems for certain families of non-commuting operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkhipov, G. I. & Oskolkov, K. I., A special trigonometric series and its applications. Mat. Sb., 134 (176) (1987), 147–157, 287 (Russian); English translation in Math. USSR–Sb., 62 (1989), 145–155.Google Scholar
  2. 2.
    Bergelson, V. & Leibman, A., A nilpotent Roth theorem. Invent. Math., 147 (2002), 429–470.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bourgain, J., On the maximal ergodic theorem for certain subsets of the integers. Israel J. Math., 61 (1988), 39–72.MATHMathSciNetGoogle Scholar
  4. 4.
    ____ On the pointwise ergodic theorem on L p for arithmetic sets. Israel J. Math., 61 (1988), 73–84.MATHMathSciNetGoogle Scholar
  5. 5.
    ____ Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études Sci. Publ. Math., 69 (1989), 5–45.MATHMathSciNetGoogle Scholar
  6. 6.
    Christ, M., Nagel, A., Stein, E. M. & Wainger, S., Singular and maximal Radon transforms: analysis and geometry. Ann. of Math., 150 (1999), 489–577.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    García-Cuerva, J. & Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116. North-Holland, Amsterdam, 1985.Google Scholar
  8. 8.
    Ionescu, A. D. & Wainger, S., L p boundedness of discrete singular Radon transforms. J. Amer. Math. Soc., 19 (2006), 357–383.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Leibman, A., Convergence of multiple ergodic averages along polynomials of several variables. Israel J. Math., 146 (2005), 303–315.MATHMathSciNetGoogle Scholar
  10. 10.
    Magyar, A., Stein, E. M. & Wainger, S., Discrete analogues of integral operators: maximal functions on the discrete Heisenberg group with applications to ergodic theory. To appear in J. Anal. Math.Google Scholar
  11. 11.
    Ricci, F. & Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. J. Funct. Anal., 73 (1987), 179–194.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    ____ Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds. J. Funct. Anal., 78 (1988), 56–84.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rubio de Francia, J. L., A Littlewood–Paley inequality for arbitrary intervals. Rev. Mat. Iberoamericana, 1 (1985), 1–14.MATHMathSciNetGoogle Scholar
  14. 14.
    Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993.Google Scholar
  15. 15.
    Stein, E. M. & Wainger, S., Discrete analogues of singular Radon transforms. Bull. Amer. Math. Soc., 23 (1990), 537–544.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    ____ Discrete analogues in harmonic analysis. I. l 2 estimates for singular Radon transforms. Amer. J. Math., 121 (1999), 1291–1336.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    ____ Two discrete fractional integral operators revisited. J. Anal. Math., 87 (2002), 451–479.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2007

Authors and Affiliations

  • Alexandru D. Ionescu
    • 1
  • Elias M. Stein
    • 2
  • Akos Magyar
    • 3
  • Stephen Wainger
    • 1
  1. 1.University of Wisconsin, MadisonMadisonU.S.A.
  2. 2.Princeton UniversityPrincetonU.S.A.
  3. 3.University of Georgia, AthensAthensU.S.A.

Personalised recommendations