Electrospun Ultrafine Fibers from Black Bean Protein Concentrates and Polyvinyl Alcohol
Abstract
In this study, ultrafine fibers were produced from black bean protein concentrates (BPCs) and polyvinyl alcohol (PVA) by electrospinning. The BPC was denatured under acidic (pH 2) or basic (pH 11) conditions. Polymer solutions containing different PVA concentrations (11% or 21%, w/v) and different BPC: PVA ratios (50:50 or 75:25, v/v) were used for fiber production. The electrical conductivity and rheological properties of the fiber-forming solutions were evaluated, as well as the morphology, size distribution, infrared spectrum, and thermal properties of the electrospun fibers. The fibers showed a homogeneous morphology and diameters ranging from 115 to 541 nm. Fibers from the solution containing BPC denatured at pH 11, 11% PVA, and 75:25 (v/v) BPC: PVA presented the lowest diameter, and those from BPC denatured at pH 2 had less beads than the fibers obtained from BPC denatured at pH 11. The solution formulation affected the thermal properties of the fibers, with weight loss increases ranging from 39.0% to 60.9%. The polymeric solutions containing PVA and BPC (whether denatured under basic or acidic conditions) resulted in ultrafine electrospun fibers with highly favorable characteristics that could potentially be used for the encapsulation of bioactive compounds and food applications.
Keywords
Electrospinning Black bean Denaturation MorphologyNotes
Acknowledgements
We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Centro de Microscopia Eletrônica do Sul (CEME-SUL) from Universidade Federal do Rio Grande (FURG). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Supplementary material
References
- 1.FAO, in Italy: FAO Corporate Document Repository. Cereals, pulses, legumes and vegetable proteins. CODEX alimentarius (2007), pp. 1–96Google Scholar
- 2.J.A. Evangelho, N.L. Vanier, V.Z. Pinto, J.J.D. Berrios, A.R.G. Dias, E.R. Zavareze, Food Chem. 214, 460–467 (2017)CrossRefGoogle Scholar
- 3.D. Cho, A.N. Netravali, Y. Lak, Polym. Degrad. Stab. 97(5), 747–754 (2012)CrossRefGoogle Scholar
- 4.S. Wang, M.F. Marcone, S. Barbut, L. Lim, Food Res. Int. 52(2), 467–472 (2013)CrossRefGoogle Scholar
- 5.S. Tansaz, L. Liverani, L. Vester, A.R. Boccaccini, Mater. Lett. 199, 143–146 (2017)CrossRefGoogle Scholar
- 6.A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Compos. Sci. Technol. 70(5), 703–718 (2010)CrossRefGoogle Scholar
- 7.A. Haider, S. Haider, I. Kang, Arab. J. Chem. 15, 1878–5352 (2015)Google Scholar
- 8.G. Liu, Z. Gu, Y. Hong, L. Cheng, C. Li, J. Control. Release 252, 95–107 (2017)CrossRefGoogle Scholar
- 9.J.A. Bhushani, C. Anandharamakrishnan, Trends Food Sci. Technol. 38(1), 21–33 (2014)CrossRefGoogle Scholar
- 10.M.D.A. Porto, J.P. Santos, H. Hackbart, G.P. Bruni, L.M. Fonseca, E.R. Zavareze, A.R.G. Dias, Int J Biol Macromol 126, 834–841 (2019)CrossRefGoogle Scholar
- 11.L.M. Fonseca, J.P. Oliveira, P.D. Oliveira, E.R. Zavareze, A.R.G. Dias, L.-T. Lim, Food Res. Int. 116, 1318–1326 (2019)CrossRefGoogle Scholar
- 12.Y. P. Neo, S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, , S. Y. Quek. Food Chem., 136 , 1013–1021, (2013), 2CrossRefGoogle Scholar
- 13.H. Wang, W. Wang, S. Jiang, S. Jiang, L. Zhai, Q. Jiang, Iran. Polym. J. 20, 551–558 (2011)Google Scholar
- 14.P. Wen, D.H. Zhu, H. Wu, M.H.Z.Y.R. Jing, S.Y. Han, Food Control 59, 366–376 (2016)CrossRefGoogle Scholar
- 15.V.P. Romani, A.V. Machado, B.D. Olsen, V.G. Martins, Food Hydrocoll. 74, 307–314 (2018)CrossRefGoogle Scholar
- 16.M.B. Barać, S.P. Pešić, A.Ž. Stanojević, S.B. Kostić, Čabrilo, Acta Period Technol 46, 1–18 (2015)CrossRefGoogle Scholar
- 17.A. López-Rubio, J.M. Lagaron, Innov. Food Sci. Emerg. Technol. 13, 200–206 (2012)CrossRefGoogle Scholar
- 18.A.-C. Vega-Lugo, L.-T. Lim, J. Biobased Mater. Bioenergy 2(3), 223–230 (2008)CrossRefGoogle Scholar
- 19.F.T. Silva, K.F. Cunha, L.M. Fonseca, M.D. Antunes, S.L.M. Halal, A.M. Fiorentini, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. 118(Pt A), 107–115 (2018)CrossRefGoogle Scholar
- 20.J. Carrasco-Castilla, A. J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hernández, , M. Alaiz, J. Girón-Calle, , J. Vioque, G. Dávila-Ortiz. Food Chem., 135, 1789–1795, (2012), 3CrossRefGoogle Scholar
- 21.E. Shanesazzadeh, M. Kadivar, M. Fathi, Int. J. Biol. Macromol. 119, 1–7 (2018)CrossRefGoogle Scholar
- 22.I.B. Ghoran, N. Tucker, Food Hydrocoll. 51, 227–240 (2015)CrossRefGoogle Scholar
- 23.R. C. Chandan, C. H. White, A. Kilara, Y. H. Hui. (London: Blackwell Publishing Ltd, 2006). p. 364Google Scholar
- 24.Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRefGoogle Scholar
- 25.N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28(3), 325–347 (2010)CrossRefGoogle Scholar
- 26.S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, 5. ed (World Scientific, Cingapura, 2005)Google Scholar
- 27.C. Drosou, M. Krokida, C.G. Biliaderis, Food Hydrocoll. 77, 726–735 (2018)CrossRefGoogle Scholar
- 28.Q. Fang, M. Zhu, S. Yu, G. Sui, X. Yang, Mater. Sci. Eng. B 214, 1–10 (2016)CrossRefGoogle Scholar
- 29.R. Wongkanya, P. Chuysinuan, C. Pengsuk, J. Sci. Adv. Mater. Devices 2(3), 309–316 (2017)CrossRefGoogle Scholar