Advertisement

Food Biophysics

, Volume 14, Issue 4, pp 456–466 | Cite as

Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating

  • Priscila de Castro e Silva
  • Lívio Antônio Silva PereiraEmail author
  • Amanda Maria Teixeira Lago
  • Michele Valquíria
  • Édila Maria de Rezende
  • Gabriel Ribeiro Carvalho
  • Juliano Elvis Oliveira
  • José Manoel Marconcini
ORIGINAL ARTICLE
  • 122 Downloads

Abstract

Biodegradable polymers, when reinforced with nanostructures, are considered good sustainable coatings and viable alternatives to replace conventional coatings. In addition, biopesticides are also considered safe, biodegradable and environmentally friendly; therefore there is a growing interest in nanoemulsions based on phytochemical mixtures. In this context, the aim of this study is to aggregate Neem oil nanoemulsions and pectin matrices to produce nanocomposite films, as well as evaluate the nanoemulsions effect on the film properties for coating soybean seeds. Nanoemulsions were characterized assessing their average diameter and stability, while the nanocomposite antifungal, morphology, mechanical and barrier properties were analyzed. In general, the nanoemulsions had an average diameter close to 59 ± 0.61 nm, showed good stability and its addition improved film mechanical properties: reduced stiffness, resistance, and water vapor permeability, and increased extensibility. In addition, Neem oil provided antifungal properties against Aspergillus Flavus and Penicillium Citrinum. The seed coatings promoted a positive effect on the germination process of soybean seeds. Thus, antifungal nanocomposite films from renewable sources were successfully produced. The fungicidal inhibition of Neem oil as a nanoemulsion makes these new materials promising for the production of seed coatings.

Keywords

Active packaging Nanotechnology Biopolymer Azadirachta Nanoemulsions Antifungal properties 

Notes

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001. The authors wish to thank the financial support the CNPq and FAPEMIG, technical support and supply of equipment the Embrapa Instrumentation.

Compliance with Ethical Standards

Conflict of Interests

The authors declare there is no conflict of interest for this research.

References

  1. 1.
    L. Piccinni, A. Scilingo, F. Speroni, Food Biophys. 14(1), 69–79 (2019)Google Scholar
  2. 2.
    Y. Zhang, M.J. Adams, Z. Zhang, O. Vidoni, B.H. Leuenberger, J. Achkar, Polymer (Guildf). 86, 208–219 (2016)Google Scholar
  3. 3.
    G.M. Conceição, A.D. Lucio, L.M. Mertz-Henning, F.A. Henning, M. Beche, F.F. Andrade, Rev. Bras. Eng. Agrícola Ambient. 20, 1 (2017)Google Scholar
  4. 4.
    S. Baker, T. Volova, S.V. Prudnikova, S. Satish, N.P.M.N. Prasad, Environ. Toxicol. Pharmacol. 53, 10–17 (2017)PubMedGoogle Scholar
  5. 5.
    M. Nagalakshmaiah, S. Afrin, R.P. Malladi, S. Elkoun, M. Robert, M.A. Ansari, A. Svedberg, Z. Karim, Biocomposites: Present Trends and Challenges for the Future, 1st edn. (Woodhead Publishing, Elsevier, 2019), pp. 197–215Google Scholar
  6. 6.
    H. Shaghaleh, X. Xu, S. Wang, Polymers 8, 262 (2018)Google Scholar
  7. 7.
    S. Shankar, N. Tanomrod, S. Rawdkuen, J. Rhim, Int. J. Biol. Macromol. 92, 842 (2017)Google Scholar
  8. 8.
    F. Tornuk, F. Bozkurt, M.Z. Durak, Int. J. Biol. Macromol. 103, 669 (2017)PubMedGoogle Scholar
  9. 9.
    M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Carbohydr. Polym. 157, 167–175 (2017)PubMedGoogle Scholar
  10. 10.
    I. Dammak, R.A. Carvalho, C.S.F. Trindade, R.V. Lourenço, P.J.A. Sobral, Int. J. Biol. Macromol. 98, 39–49 (2017)PubMedGoogle Scholar
  11. 11.
    C.G. Otoni, M.R. Moura, F.A. Aouada, G.P. Camilloto, R.S. Cruz, M.V. Lorevice, N.D.F.F. Soares, L.H.C. Mattoso, Food Hydrocoll. 41, 188–194 (2014)Google Scholar
  12. 12.
    M.R. Moura, F.A. Aouada, J.R. Souza, L.H.C. Mattoso, 24, 486 (2014)Google Scholar
  13. 13.
    M.A. Shah, S.H. Wani, J. Food Bioeng. Nanoprocessing 1, 285 (2016)Google Scholar
  14. 14.
    J. Jerobin, R.S. Sureshkumar, C.H. Anjali, A. Mukherjee, N. Chandrasekaran, Carbohydr. Polym 90, 1750 (2012)PubMedGoogle Scholar
  15. 15.
    G. Sekar, A. Sivakumar, A. Mukherjee, N. Chandrasekaran, J. Mol. Liq. 212, 283–290 (2015)Google Scholar
  16. 16.
    A.J. Jadhav, C.R. Holkar, S.E. Karekar, D.V. Pinjari, A.B. Pandit, Ultrason. Sonochem. 23, 201–207 (2015)PubMedGoogle Scholar
  17. 17.
    M.V. Lorevice, C.G. Otoni, M.R. Moura, L.H.C. Mattoso, Food Hydrocoll. 52, 732–740 (2016)Google Scholar
  18. 18.
    R. Núñez-Flores, B. Giménez, F. Fernández-Martín, M.E. López-Caballero, M.P. Montero, M.C. Gómez-Guillén, Food Hydrocoll. 30(1), 163–172 (2013)Google Scholar
  19. 19.
    S. Zivanovic, S. Chi, A.F. Draughon, J. Food Sci. 70, 45 (2005)Google Scholar
  20. 20.
    ASTM, Standard Test Methods for Water Vapor Transmission of Materials, E96/E96M-12 (American National Standards Institute, USA, 2012)Google Scholar
  21. 21.
    T. Bourtoom, M.S. Chinnan, Food Sci. Technol. Int. 15, 149 (2008)Google Scholar
  22. 22.
    V.O. Tetens, Z. Geophys. 6, 297 (1930)Google Scholar
  23. 23.
    CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 13th edn. (Clinical and Laboratory Standards Institute, USA, 2018)Google Scholar
  24. 24.
    Brazil, Rules for Seed Analysis, 1st edn. (Ministério da Agricultura Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, Brasília, 2009)Google Scholar
  25. 25.
    R.S. Ghotbi, M. Khatibzadeh, S. Kordbacheh, Proc. 5th Int. Conf. Nanotechnol. Fundam. Appl. 13, 1 (2014)Google Scholar
  26. 26.
    E. Osman, M. Ali, N.A. Shakil, V.S. Rana, D.J. Sarkar, S. Majumder, P. Kaushik, B.B. Singh, J. Kumar, Ind. Crop. Prod. 108, 379–387 (2017)Google Scholar
  27. 27.
    A. Azeem, M. Rizwan, F.J. Ahmad, Z. Iqbal, R.K. Khar, M. Aqil, S. Talegaonkar, AAPS Pharma Sci. Technol. 10(1), 69–76 (2009)Google Scholar
  28. 28.
    V. Polychniatou, C. Tzia, Food Bioprocess Technol. 9(5), 882–891 (2016)Google Scholar
  29. 29.
    D.J. Mcclements, Soft Matter 8(6), 1719–1729 (2012)Google Scholar
  30. 30.
    B. Öztürk, Eur. J. Lipid Sci. Technol. 119(7), 1500539 (2017)Google Scholar
  31. 31.
    B. Ghanbarzadeh, A.R. Oromiehi, J. Food Eng. 90(4), 517–524 (2009)Google Scholar
  32. 32.
    Y. Qin, W. Li, D. Liu, M. Yuan, L. Li, Prog. Org. Coat. 103, 76–82 (2017)Google Scholar
  33. 33.
    K. Burapapadh, M. Kumpugdee-Vollrath, D. Chantasart, P. Sriamornsak, Carbohydr. Polym. 82(2), 384–393 (2010)Google Scholar
  34. 34.
    S. Kokoszka, F. Debeaufort, A. Hambleton, A. Lenart, A. Voilley, Innov. Food Sci. Emerg. Technol. 11(3), 503–510 (2010)Google Scholar
  35. 35.
    H.H. Gahruie, E. Ziaee, M.H. Eskandari, S.M.H. Hosseini, Carbohdrate Polym. 166, 93–103 (2017)Google Scholar
  36. 36.
    N. Sharma, B.S. Khatkar, R. Kaushik, P. Sharma, R. Sharma, Int. Food Res. J. 24, 94 (2017)Google Scholar
  37. 37.
    J.P. Maran, V. Sivakumar, R. Sridhar, V.P. Immanuel, Ind. Crop. Prod. 42, 159–168 (2013)Google Scholar
  38. 38.
    M.V. Dias, N. Fátima, F. Soares, S.V. Borges, M. Maria, D. Sousa, C. Antônio, I.R. Nolasco, D. Oliveira, E. Antonio, A. Medeiros, Food Chem 141(3), 3160–3166 (2013)PubMedGoogle Scholar
  39. 39.
    A. Aljawish, L. Muniglia, A. Klouj, J. Jasniewski, J. el Scher, D. Stephane, Food Hydrocoll. 60, 551–558 (2016)Google Scholar
  40. 40.
    A. Nawab, F. Alam, M.A. Haq, Z. Lutfi, A. Hasnain, Int. J. Biol. Macromol. 98, 869–876 (2017)PubMedGoogle Scholar
  41. 41.
    N.L. Oliveira, A.A. Rodrigues, I.C.O. Neves, A.M.T. Lago, S.V. Borges, J.V. Resende, Ind. Crop. Prod. 130, 499–510 (2019)Google Scholar
  42. 42.
    A. Perdones, M. Vargas, L. Atarés, A. Chiralt, Food Hydrocoll. 36, 256–264 (2014)Google Scholar
  43. 43.
    J. Antoniou, F. Liu, H. Majeed, F. Zhong, Food Hydrocoll. 44, 309–319 (2015)Google Scholar
  44. 44.
    S. Sahraee, J.M. Milani, B. Ghanbarzadeh, H. Hamishehkar, LWT Food Sci. Technol. 76, 33 (2016)Google Scholar
  45. 45.
    A. Cano, M. Cháfer, A. Chiralt, C. González-martínez, Foods 5, E3 (2016)Google Scholar
  46. 46.
    T.M. Santos, L. Ribeiro, C.A. Caceres, E.N. Ito, H.M.C. Azeredo, Int. J. Food Sci. Technol. 49(9), 2045–2051 (2014)Google Scholar
  47. 47.
    S. Sanuja, A. Agalya, M.J. Umapathy, Int. J. Biol. Macromol. 74, 76–84 (2015)PubMedGoogle Scholar
  48. 48.
    Q. Huang, H. Yu, Q. Ru, J. Food Sci. 75, 50 (2010)Google Scholar
  49. 49.
    M.M. Joe, K. Bradeeba, R. Parthasarathi, P.K. Sivakumaar, P.S. Chauhan, S. Tipayno, A. Benson, T. Sa, J. Taiwan Inst. Chem. Eng. 43(2), 172–180 (2012)Google Scholar
  50. 50.
    V. Ghosh, A. Mukherjee, N. Chandrasekaran, Bionanoscience 4(2), 157–165 (2014)Google Scholar
  51. 51.
    A. Myc, T. Vanhecke, J.J. Landers, T. Hamouda, J.R. Baker, Mycopathologia 144, 195 (2002)Google Scholar
  52. 52.
    S. Sudha, M.K. Naik, K. Ajithkumar, J. Food Sci. Technol. 50(1), 159–164 (2013)PubMedGoogle Scholar
  53. 53.
    L.F. Ferreira, G.F. Abreu, A.M.T. Lago, L.P. Figueiredo, F.M. Borém, M.A. Martins, S.V. Borges, M.V. Dias, LWT Food Sci. Technol. 96, 274–280 (2018)Google Scholar
  54. 54.
    H. Balouchi, S. Baladi, A. Moradi, M.M. Dehnavi, Int. Seed Test. Assoc. 45, 130 (2017)Google Scholar
  55. 55.
    T.A.S. Smaniotto, O. Resende, K.A.F. Marçal, D.E.C. Oliveira, G.A. Simon, Rev. Bras. Eng. Agrícola Ambient. 18(4), 446–453 (2014)Google Scholar
  56. 56.
    J. Liu, W. Qin, H. Wu, C. Yang, J. Deng, N. Iqbal, W. Liu, J. Du, K. Shu, F. Yang, X. Wang, T. Yong, W. Yang, Food Chem. 223, 104–113 (2017)PubMedGoogle Scholar
  57. 57.
    K. Rathinavel, Indian J. Agricutural Reserarch 49, 447 (2015)Google Scholar
  58. 58.
    M.P. Ludwig, O.A.L. Filho, L. Baudet, L.M.C. Dutra, S.A. Gonçalves, R.L. Crizel, Rev. Bras. Sementes 33(1), 395–406 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Priscila de Castro e Silva
    • 1
  • Lívio Antônio Silva Pereira
    • 1
    Email author
  • Amanda Maria Teixeira Lago
    • 2
  • Michele Valquíria
    • 3
  • Édila Maria de Rezende
    • 3
  • Gabriel Ribeiro Carvalho
    • 2
  • Juliano Elvis Oliveira
    • 4
  • José Manoel Marconcini
    • 5
  1. 1.Postgraduate Program in Biomaterial EngineeringFederal University of LavrasLavrasBrazil
  2. 2.Department of Food ScienceFederal University of LavrasLavrasBrazil
  3. 3.Department of Biology, Plant PhysiologyFederal University of LavrasLavrasBrazil
  4. 4.Department of EngineeringFederal University of LavrasLavrasBrazil
  5. 5.Brazilian Agricultural Research Corporation InstrumentationSão CarlosBrazil

Personalised recommendations