Advertisement

Food Biophysics

, Volume 14, Issue 4, pp 383–392 | Cite as

Avocado Oil Incorporated in Ultrafine Zein Fibers by Electrospinning

  • Fernanda D. KrumreichEmail author
  • Luciana P. Prietsch
  • Mariana D. Antunes
  • Cristina Jansen-Alves
  • Carla Rosane B. Mendonça
  • Caroline D. Borges
  • Elessandra da R. Zavareze
  • Rui C. Zambiazi
ORIGINAL ARTICLE
  • 82 Downloads

Abstract

The objective of this study was to encapsulate avocado oil in ultrafine zein fibers by the electrospinning technique. Avocado oil, at concentrations of 15 and 30% (w/w), was incorporated into 20, 25 and 30% (w/v) zein polymer solutions. The polymer solutions were evaluated for viscosity and electrical conductivity. The zein fibers containing the avocado oil were evaluated for the efficiency of encapsulation, morphology and size distribution of diameter, FTIR-ATR and X-ray diffraction, as well as for the release of carotenoids in gastrointestinal conditions in vitro. At the concentration of 30% zein, continuous ultrafine fibers were obtained, without bead formation and with mean diameter distribution ranging from 618 to 971 nm, whose encapsulation efficiency was higher than 77%. The FTIR-ATR analysis showed the encapsulation of the oil, and X-ray diffraction showed the amorphous structure of the fibers. It was verified that the composite fiber of 30% of zein and 30% of oil had a release profile close to the ideal of carotenoid release under simulated gastrointestinal conditions.

Keywords

Morphology Encapsulation efficiency Polymer solution Gastrointestinal simulation 

Notes

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the FAPERGS for funding and support.

References

  1. 1.
    M.A.Z. Santos, T.V.R. Alicieo, C.M.P. Pereira, G.R. Ramos, C.R.B. Mendonça, J. Am. Oil Chem. Soc. 9, 19–27 (2014)Google Scholar
  2. 2.
    A. Lopez-Rubio, R. Gavara, J.M. Lagaron, Trends Food Sci. Technol. 17(10), 567–575 (2006)Google Scholar
  3. 3.
    X. Qin, J. Zhong, J Oleo Sci. 65(11), 881–888 (2016)PubMedGoogle Scholar
  4. 4.
    J. M. Turatti, L. C. Santos, J. S. Tango, H. K. Arim. ITAL, 22, 267–284 (1985)Google Scholar
  5. 5.
    J. S. Tango, J. M. Turatti. ITAL, 156–192 (1992)Google Scholar
  6. 6.
    V. Bizimana, W.M. Breene, A.S. Csallany, J. Am. Oil Chem. Soc. 70(8), 821–822 (1993)Google Scholar
  7. 7.
    S. P. Bora, N. Narain, R. V. M. Rocha, M. Q. Paulo. A&G, 52, 3–4, 171–174 (2001)Google Scholar
  8. 8.
    J.M. Salgado, F. Danieli, M.A.B. Regitano-D'arce, A. Frias, D.N. Mansi, Ciênc. Tecnol. Aliment. 28, 20–26 (2008)Google Scholar
  9. 9.
    I. Santana, L. M. C. Cabral, S. P. Freitas, A. G. Torres. CBPFH-RJ (2011)Google Scholar
  10. 10.
    J.A.A. Ortega, M.R. López, R.R.R. Torre, IJRAFS 1, 13–22 (2013)Google Scholar
  11. 11.
    F.D. Krumreich, C.D. Borges, C.R.B. Mendonça, C. Jansen-Alves, R.C. Zambiazi, Food Chem. 257, 376–381 (2018)PubMedGoogle Scholar
  12. 12.
    Y.P. Neo, S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M.K. Nieuwoudt, D. Liu, S.Y. Queck, Food Chem. 136(2), 1013–1021 (2013)CrossRefGoogle Scholar
  13. 13.
    B.J. Papenburg, S. Schüllerravoo, L.A.M. Bolhuisversteeg, L. Hartsuiker, D.W. Grijpma, J. Feijen, M. Wessling, D. Stamatialis, Acta Biomater. 9(9), 3281–3294 (2009)Google Scholar
  14. 14.
    S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, 5nd. ed. (World Scientific, Singapore, 2005) pp. 1–396Google Scholar
  15. 15.
    J. O’Sullivan, M. Arellano, R. Pichot, I. Norton, Food Hydrocoll. 42(3), 386–396 (2014)Google Scholar
  16. 16.
    A.C. Vega-Lugo, L.T. Lim, Food Res. 42(8), 933–940 (2009)Google Scholar
  17. 17.
    N. Okutan, P. Terzi, F. Altay, Food Hydrocoll. 39, 19–26 (2014)Google Scholar
  18. 18.
    F. Boccafoschi, J. Habermehl, S. Vesentini, D. Mantovani, Biomaterials 26(35), 7410–7417 (2005)PubMedGoogle Scholar
  19. 19.
    Y. P. Neo, S. Ray, A. J., Easteal, M. G. Nikolaidis, S. Y. Queck. J. Food Eng., 109, 645–651 (2012), 4Google Scholar
  20. 20.
    R. Jayakumar, M. Prabaharan, S.V. Nair, H. Tamura, Biotechnol. Adv. 28, 142–150 (2010)PubMedGoogle Scholar
  21. 21.
    C. Drosou, M. Krokida, C.G. Biliaderis, Food Hydrocoll. 77, 726–735 (2017)Google Scholar
  22. 22.
    C. Burger, B.S. Hsiao, B. Chu, Annu. Rev. Mater. Res. 36, 333–368 (2006)Google Scholar
  23. 23.
    R. Shukla, M. Cheryan, Ind. Crop. Prod. 13(3), 171–192 (2001)Google Scholar
  24. 24.
    B.M. Prasanna, S.K. Vasal, B. Kassahun, N.N. Singh, Curr. Sci. 81(10), 1308–1319 (2001)Google Scholar
  25. 25.
    N. Parris, P.H. Cooke, K.B. Hicks, J. Agric. Food Chem. 53(12), 4788–4792 (2005)PubMedGoogle Scholar
  26. 26.
    A. Fernandez, S. Torres-Giner, J.M. Lagaron, Food Hydrocoll. 23(5), 1427–1432 (2009)Google Scholar
  27. 27.
    Y. Li, L.-T. Lim, Y. Kakuda, J. Food Sci. 74(3), 233–240 (2009)Google Scholar
  28. 28.
    Y. Luo, B. Zhang, W.H. Cheng, Q. Wang, Carbohydr. Polym. 82(3), 942–951 (2010)Google Scholar
  29. 29.
    Y. Luo, B. Zhang, M. Whent, L.L. Yu, Q. Wang, Colloid Surf.B. 85(2), 145–152 (2011)Google Scholar
  30. 30.
    K. Moomand, L.-T. Lim, Food Res. Int. 62, 523–532 (2014)Google Scholar
  31. 31.
    C.L.S. De, O. Mori, N.A. Passos, J.E. Oliveira, L.H.C. Mattoso, F.A. Mori, A.G. Carvalho, A. De, S. Fonseca, G.H.D. Tonoli, Ind. Crop. Prod. 52, 298–304 (2014)Google Scholar
  32. 32.
    P. Limón, R. Malheiro, S. Casal, F.G. Acién-Fernández, J.M. Fernández Sevilla, N. Rodrigues, R. Cruz, R. Bermejo, J.A. Pereira, Food Chem. 175, 203–211 (2015)PubMedGoogle Scholar
  33. 33.
    D.B. Rodriguez-Amaya, E.B. Rodriguez, J. Amaya-Farfan, Malays. J. Nutr. 12(1), 101–121 (2006)Google Scholar
  34. 34.
    S.C. Sutter, M.P. Buera, B.E. Elizalde, Int. J. Pharm. 332(1-2), 45–54 (2007)PubMedGoogle Scholar
  35. 35.
    D.B. Rodrigues-Amaya, A Guide to Carotenoid Analysis in Foods (ILSI Press, Washington, 2001), pp. 1–64Google Scholar
  36. 36.
    Y.T. Chiu, C.P. Chiu, J.T. Chien, G.H. Ho, J. Yang, B.H. Chen, J. Agric. Food Chem. 55(13), 5123–5130 (2007)PubMedGoogle Scholar
  37. 37.
    E.I. Paramera, S.J. Konteles, V.T. Karathanos, Food Chem. 125(3), 892–902 (2011)Google Scholar
  38. 38.
    L. Zheng, Z. Ding, M. Zhang, J. Sun, J. Food Eng. 104(1), 89–95 (2011)Google Scholar
  39. 39.
    M.D. Antunes, G.S. Dannenberg, A.M. Fiorentini, V.Z. Pinto, L.-T. Lim, E.R. Zavareze, A.R.G. Dias, Int. J. Biol. Macromol. 104, 874–882 (2017)Google Scholar
  40. 40.
    K. Moomand, L.-T. Lim, Food Hydrocoll. 46, 191–200 (2015)Google Scholar
  41. 41.
    N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28(3), 325–347 (2010)PubMedPubMedCentralGoogle Scholar
  42. 42.
    A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Ind. Crop. Prod. 42, 469–479 (2013)Google Scholar
  43. 43.
    H. Yang, K. Feng, P. Wen, M.-H. Zong, W.-Y. Lou, H. Wu, LWT 84, 82–90 (2017)Google Scholar
  44. 44.
    E.K. Bae, S.J. Lee, J. Microencapsul. 25(8), 549–560 (2008)PubMedGoogle Scholar
  45. 45.
    S. Torres-Giner, E. Gimenez, J.M. Lagaron, Food Hydrocoll. 22(4), 601–614 (2008)Google Scholar
  46. 46.
    L. Deng, X. Zhang, Y. Li, F. Que, X., Kang, Y. Liu, F. Feng, H. Zhang. Food Hydrocoll., 75, 72–80 (2018)Google Scholar
  47. 47.
    Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63(15), 2223–2253 (2003)Google Scholar
  48. 48.
    Z.C. Yao, M.W. Chan, Z. Ahmad, J.S. Li, J. Food Eng. 191, 115–123 (2016)Google Scholar
  49. 49.
    A. Yilmaz, F. Bozkurt, P.K. Cicek, E. Dertli, M.Z. Durak, M.T. Yilmaz, Innov. Food Sci. Emerg. Technol. 37, 74–83 (2016)Google Scholar
  50. 50.
    N. Quiñones-Islas, O.G. Meza-Márquez, G. Osorio-Revilla, T. Gallardo-Velazquez, Food Res. Int. 51(1), 148–154 (2013)Google Scholar
  51. 51.
    L.A. Forato, T.C. Bicudo, L.A. Colnago, Biopolymers 72(6), 421–426 (2003)PubMedGoogle Scholar
  52. 52.
    D.S. Bastos, M.P. Gonçalves, C.T. Andrade, K.G.L. Araújo, M.H.M.R. Leão, Food Bioprod. Process. 90(4), 683–692 (2012)Google Scholar
  53. 53.
    S. J. Barbosa. Diss. UNIMONTES-MG, 107 (2010)Google Scholar
  54. 54.
    F. Sansone, T. Mencherini, P. Picerno, M. D’amore, R.P. Aquino, M.R. Lauro, J. Food Eng. 105(3), 468–476 (2011)Google Scholar
  55. 55.
    S. Yun, T. Chuan-He, Food Res. Int. 79, 64–72 (2016)Google Scholar
  56. 56.
    W. Somchue, W. Sermsri, J. Shiowatana, A. Siripinyanond, Food Res. Int. 42(8), 909–914 (2009)Google Scholar
  57. 57.
    J.K. Rutz, R.C. Zambiazi, C.D. Borges, F.D. Krumreich, S.R.D.A. Luz, N. Hartwig, C.G. Da Rosa, Carbohydr. Polym. 98, 1256–1265 (2013)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fernanda D. Krumreich
    • 1
    Email author
  • Luciana P. Prietsch
    • 1
  • Mariana D. Antunes
    • 1
  • Cristina Jansen-Alves
    • 1
  • Carla Rosane B. Mendonça
    • 2
  • Caroline D. Borges
    • 2
  • Elessandra da R. Zavareze
    • 1
  • Rui C. Zambiazi
    • 2
  1. 1.Post Graduate Program of Food Science and Technology, Faculty of Agronomy Eliseu MacielFederal University of PelotasPelotasBrazil
  2. 2.Center of Chemical, Pharmaceuticals and Food SciencesFederal University of PelotasPelotasBrazil

Personalised recommendations