Food Biophysics

, Volume 14, Issue 4, pp 365–382 | Cite as

Improving Hydrophilic Barriers of Encapsulated Compounds in Ca-Alginate Microgel Particles through a New Ionotropic Gelation Method for Double Emulsion Droplets

  • Boon-Beng Lee
  • Bhesh R. Bhandari
  • Su Hung Ching
  • Tony HowesEmail author


The ability of encapsulation to protect hydrophilic–bioactive food compounds from harsh environments can be improved by strengthening the hydrophilic barriers of encapsulated food compounds in Ca-alginate microgel particles via the integration of oil into the microgels. This study introduces a one-step procedure to integrate water-in-oil (W/O) emulsion droplets directly into Ca-alginate microgels during the production using the impinging aerosols system. A water-in-oil-in-water (20 kg m−3 alginate solution) (W1/O/W2) double emulsion was prepared using a high speed homogeniser followed by a microfluidiser. The microstructure of the W1/O/W2 emulsion was analysed using optical and fluorescence microscopy. The mean diameters of the W1/O/W2 emulsion droplets and resultant microgels were in the range of 27.8–65.4 μm and 160–420 μm, respectively. Food dye was used as a proxy for a hydrophilic food compound and its release from the microgels was significantly decreased when it was encapsulated in the W/O emulsion droplets. Based on the numerical analysis, the presence of the W/O emulsion droplets in the gel network reduced the degree of gelation of the microgel because the diffusion rate of Ca2+ cation in the microgel is reduced. The degree of gelation of the W/O emulsion droplets encapsulated microgel is 0.6 when the diameter of the droplet is reduced to 77.5 μm and the concentration of CaCl2 solution is doubled to 22 kg m−3. The potentiality of the impinging aerosol system to produce Ca-alginate microgels to encapsulate hydrophilic compounds with improved barriers is presented in this work.


Ca-alginate microgel Hydrophilic barrier Double emulsion Impinging aerosol system Encapsulation 


Symbols Used


[m2], surface area of alginate solution droplet


[kg m−3], concentration of alginate solution


[kg m−3], concentration of Ca2+ cation


[m], diameter


[μm], diameter such that 10% of the total sample volume have a smaller diameter


[μm], diameter such that 50% of the total sample volume have a smaller diameter


[μm], diameter such that 90% of the total sample volume have a smaller diameter


[μm], volume surface mean diameter


[μm], volume mean diameter


[m2 s−1], diffusion coefficient


[−], collection efficiency


[kg m−3], concentration of Ca-alginate gel


[m], falling distance


[−], position (or grid point) in alginate solution droplet


[−], average number of Ca2+ cation per alginate-alginate dimer formation


[m6 kg−2 s−1], reaction rate constant


[kg], mass


[−], number of grid point


[−], degree of gelation; [kg m−3 s−1], reaction rate


[−], dye released ratio


[m], radial distance from the centre of an alginate solution droplet


[m s−1], velocity


[m3], volume

\( \dot{V} \)

[m3 s−1], volumetric flow rate

Greek Letters


[m3 m−3], concentration of CaCl2 droplets


[−], volume fraction


[−], span







calcium chloride


alginate solution droplet










initial or blank







The authors thank the Ministry of Higher Education, Malaysia and the Universiti Malaysia Perlis for providing a PhD scholarship to Mr. Lee Boon Beng.


  1. 1.
    N. Wilson, N.P. Shah, ASEAN Food Journal 14(1), 1–14 (2007)Google Scholar
  2. 2.
    V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, B. Bugarski, Procedia Food Science 1 (Supplement C, 1806–1815 (2011)Google Scholar
  3. 3.
    Z. Fang, B. Bhandari, Trends Food Sci. Technol. 21(10), 510–523 (2010)Google Scholar
  4. 4.
    S.H. Ching, N. Bansal, B. Bhandari, Crit. Rev. Food Sci. Nutr. 57(6), 1133–1152 (2017)PubMedGoogle Scholar
  5. 5.
    B.B. Lee, P. Ravindra, E.S. Chan, Chemical Engineering & Technology 36(10), 1627–1642 (2013)Google Scholar
  6. 6.
    B.-B. Lee, B.R. Bhandari, T. Howes, Chemical Engineering & Technology 39(12), 2355–2369 (2016)Google Scholar
  7. 7.
    K.Y. Lee, D.J. Mooney, Prog. Polym. Sci. 37(1), 106–126 (2012)PubMedPubMedCentralGoogle Scholar
  8. 8.
    H. Tanaka, S. Irie, Biotechnol. Tech. 2(2), 115–120 (1988)Google Scholar
  9. 9.
    V. Rahmani, R. Elshereef, H. Sheardown, Eur. J. Pharm. Biopharm. 117 (Supplement C, 232–243 (2017)PubMedGoogle Scholar
  10. 10.
    H. Nie, A. He, J. Zheng, S. Xu, J. Li, C.C. Han, Biomacromolecules 9(5), 1362–1365 (2008)PubMedGoogle Scholar
  11. 11.
    A. Belščak-Cvitanović, D. Komes, S. Karlović, et al., Food Chem. 167 (Supplement C, 378–386 (2015)PubMedGoogle Scholar
  12. 12.
    A. Belščak-Cvitanović, V. Đorđević, S. Karlović, et al., Food Hydrocoll. 51 (Supplement C, 361–374 (2015)Google Scholar
  13. 13.
    C. Peniche, I. Howland, O. Carrillo, C. Zaldı́var, W. Argüelles-Monal, Food Hydrocoll. 18(5), 865–871 (2004)Google Scholar
  14. 14.
    E.G. Popa, M.E. Gomes, R.L. Reis, Biomacromolecules 12(11), 3952–3961 (2011)PubMedGoogle Scholar
  15. 15.
    S. Jaya, T.D. Durance, R. Wang, J. Microencapsul. 26(2), 143–153 (2009)PubMedGoogle Scholar
  16. 16.
    Z. Mohamadnia, M.J. Zohuriaan-Mehr, K. Kabiri, A. Jamshidi, H. Mobedi, J. Biomater. Sci. Polym. Ed. 19(1), 47–59 (2008)PubMedGoogle Scholar
  17. 17.
    D.M. Hariyadi, S.C.-Y. Lin, Y. Wang, et al., J. Drug Target. 18(10), 831–841 (2010)PubMedGoogle Scholar
  18. 18.
    E.-S. Chan, Z.-H. Yim, S.-H. Phan, R.F. Mansa, P. Ravindra, Food Bioprod. Process. 88(2), 195–201 (2010)Google Scholar
  19. 19.
    E.A. Soliman, A.Y. El-Moghazy, M.S.M. El-Din, M.A. Massoud, Journal of Encapsulation and Adsorption Sciences 03(01), 8 (2013)Google Scholar
  20. 20.
    S.H. Ching, N. Bansal, B. Bhandari, Food Res. Int. 75, 182–193 (2015)PubMedGoogle Scholar
  21. 21.
    E.-S. Chan, Carbohydr. Polym. 84(4), 1267–1275 (2011)Google Scholar
  22. 22.
    M. Durante, M.S. Lenucci, B. Laddomada, G. Mita, S. Caretto, J. Agric. Food Chem. 60(42), 10689–10695 (2012)PubMedGoogle Scholar
  23. 23.
    Z. Zhang, R. Zhang, D.J. McClements, Food Hydrocoll. 61 (Supplement C, 1–10 (2016)Google Scholar
  24. 24.
    S.H. Ching, N. Bansal, B. Bhandari, Food Res. Int. 80 (Supplement C, 50–60 (2016)Google Scholar
  25. 25.
    A. C. K. Sato, M. Z. Polastro, G. d. F. Furtado and R. L. Cunha, Food Biophysics 13 (3), 316–323 (2018)Google Scholar
  26. 26.
    B. Zukas, N. Gupta, Gels 2(2), 14 (2016)PubMedCentralGoogle Scholar
  27. 27.
    S. Abang, E.-S. Chan, D. Poncelet, J. Microencapsul. 29(5), 417–428 (2012)PubMedGoogle Scholar
  28. 28.
    E. Martins, D. Renard, Z. Adiwijaya, E. Karaoglan, D. Poncelet, J. Microencapsul. 34(1), 82–90 (2017)PubMedGoogle Scholar
  29. 29.
    E. Martins, D. Poncelet, M. Marquis, J. Davy, D. Renard, Food Hydrocoll. 63 (Supplement C, 447–456 (2017)Google Scholar
  30. 30.
    E. Martins, D. Renard, J. Davy, M. Marquis, D. Poncelet, J. Microencapsul. 32(1), 86–95 (2015)PubMedGoogle Scholar
  31. 31.
    D. Sun-Waterhouse, W. Wang, G.I.N. Waterhouse, Food Bioprocess Technol. 7(8), 2159–2177 (2014)Google Scholar
  32. 32.
    D. Sun-Waterhouse, J. Zhou, G.M. Miskelly, R. Wibisono, S.S. Wadhwa, Food Chem. 126(3), 1049–1056 (2011)Google Scholar
  33. 33.
    N. Patel, D. Lalwani, S. Gollmer, E. Injeti, Y. Sari, J. Nesamony, Progress in Biomaterials 5(2), 117–133 (2016)PubMedPubMedCentralGoogle Scholar
  34. 34.
    B. Bhandari, Australia patent no. WO2009062254 (2009)Google Scholar
  35. 35.
    A. Sohail, M.S. Turner, E.K. Prabawati, A.G.A. Coombes, B. Bhandari, Int. J. Food Microbiol. 157(2), 162–166 (2012)PubMedGoogle Scholar
  36. 36.
    A. Sohail, B. Bhandari, M.S. Turner, A.G.A. Coombes, Journal of Drug Delivery Science and Technology 22(2), 139–143 (2012)Google Scholar
  37. 37.
    A. Sohail, M.S. Turner, A. Coombes, T. Bostrom, B. Bhandari, Int. J. Food Microbiol. 145(1), 162–168 (2011)PubMedGoogle Scholar
  38. 38.
    D.M. Hariyadi, Y. Wang, S.C.-Y. Lin, T. Bostrom, B. Bhandari, A.G.A. Coombes, J. Microencapsul. 29(3), 250–261 (2012)PubMedGoogle Scholar
  39. 39.
    C. Goubault, K. Pays, D. Olea, et al., Langmuir 17(17), 5184–5188 (2001)Google Scholar
  40. 40.
    K. Pays, J. Giermanska-Kahn, B. Pouligny, J. Bibette, F. Leal-Calderon, Langmuir 17(25), 7758–7769 (2001)Google Scholar
  41. 41.
    H. Bokkhim, N. Bansal, L. Grøndahl, B. Bhandari, Food Hydrocoll. 53, 270–276 (2016)Google Scholar
  42. 42.
    B. Petigara Harp, E. Miranda-Bermudez, J.N. Barrows, J. Agric. Food Chem. 61(15), 3726–3736 (2013)Google Scholar
  43. 43.
    O. Vohl, S.K. Mitra, S. Wurzler, K. Diehl, H.R. Pruppacher, Atmos. Res. 85(1), 120–125 (2007)Google Scholar
  44. 44.
    S. Schroder, F. Olawsky, M. Hering-Bertram, H. Hagen, Procedia Computer Science 4, 781–790 (2011)Google Scholar
  45. 45.
    B.A. Westrin, A. Axelsson, Biotechnol. Bioeng. 38(5), 439–446 (1991)PubMedGoogle Scholar
  46. 46.
    T. Yotsuyanagi, W.I. Higuchi, A.-H. Ghanem, J. Pharm. Sci. 62(1), 40–43 (1973)PubMedGoogle Scholar
  47. 47.
    B. Jönsson, H. Wennerström, P.G. Nilsson, P. Linse, Colloid Polym. Sci. 264(1), 77–88 (1986)Google Scholar
  48. 48.
    T.J. Chresand, B.E. Dale, S.L. Hanson, R.J. Gillies, Biotechnol. Bioeng. 32(8), 1029–1036 (1988)PubMedGoogle Scholar
  49. 49.
    B. Thu, O. Gåserød, D. Paus, et al., Biopolymers 53(1), 60–71 (2000)PubMedGoogle Scholar
  50. 50.
    A. Mikkelsen, A. Elgsaeter, Biopolymers 36(1), 17–41 (1995)Google Scholar
  51. 51.
    S. K. Inoue, Oregon State University, 1997Google Scholar
  52. 52.
    G. Skjåk-Bræk, H. Grasdalen, O. Smidsrød, Carbohydr. Polym. 10(1), 31–54 (1989)Google Scholar
  53. 53.
    Y. Zhao, F. Hu, J.J. Evans, M.T. Harris, Chem. Eng. Sci. 66(5), 848–858 (2011)Google Scholar
  54. 54.
    J.E. Maneval, D. Bernin, H.T. Fabich, J.D. Seymour, S.L. Codd, Magn. Reson. Chem. 49(10), 627–640 (2011)PubMedGoogle Scholar
  55. 55.
    A. Haug, O. Smidsrød, Acta Chem. Scand. 16(7), 1569–1578 (1962)Google Scholar
  56. 56.
    M. Yildirim, G. Sumnu, S. Sahin, J. Dispers. Sci. Technol. 38(6), 807–814 (2017)Google Scholar
  57. 57.
    H. Okochi, M. Nakano, Chemical & Pharmaceutical Bulletin 44(1), 180–186 (1996)Google Scholar
  58. 58.
    J. Wang, A. Shi, D. Agyei, Q. Wang, RSC Adv. 7(57), 35917–35927 (2017)Google Scholar
  59. 59.
    E.-S. Chan, B.-B. Lee, P. Ravindra, D. Poncelet, J. Colloid Interface Sci. 338(1), 63–72 (2009)PubMedGoogle Scholar
  60. 60.
    M. Juttulapa, S. Piriyaprasarth, H. Takeuchi, P. Sriamornsak, Asian Journal of Pharmaceutical Sciences 12(1), 21–27 (2017)Google Scholar
  61. 61.
    I.I. Muhamad, C.H. Quin, S. Selvakumaran, J. Food Sci. Technol. 53(4), 1845–1855 (2016)PubMedGoogle Scholar
  62. 62.
    O. Wan-Ding, T. Beng-Ti, Q.S. Young, T. Siah-Ying, C. Eng-Seng, J. Food Sci. 80(1), E93–E100 (2015)Google Scholar
  63. 63.
    B.-B. Lee, B.R. Bhandari, T. Howes, Colloids Surf. A Physicochem. Eng. Asp. 533 (Supplement C, 116–124 (2017)Google Scholar
  64. 64.
    J. Cheng, J.-F. Chen, M. Zhao, Q. Luo, L.-X. Wen, K.D. Papadopoulos, J. Colloid Interface Sci. 305(1), 175–182 (2007)PubMedGoogle Scholar
  65. 65.
    S. Magdassi, N. Garti, Colloids and Surfaces 12 (Supplement C, 367–373 (1984)Google Scholar
  66. 66.
    A.N. Ford Versypt, R.D. Braatz, Comput. Chem. Eng. 71, 241–252 (2014)Google Scholar
  67. 67.
    M. N. Ozisik, Heat Conduction. (John Wiley & Sons, Inc, the United States of America, 1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Centre of Excellence for Biomass Utilization, School of Bioprocess EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.School of Agriculture and Food SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations