Advertisement

Physical and Textural Properties of Mayonnaise Prepared Using Virgin Coconut Oil/Fish Oil Blend

  • Umesh Patil
  • Soottawat BenjakulEmail author
ORIGINAL ARTICLE
  • 39 Downloads

Abstract

Physical and textural properties of mayonnaise prepared using virgin coconut oil (VCO)/fish oil (FO) blends at different ratios were examined in comparison with that prepared using soybean oil (SO) as affected by storage time (30 days). At day 0, sample prepared with SO showed the highest L*, a*, and b* values among all the samples, whereas the lowest values were noticeable for VCO containing sample. At day 30 of storage, decreases in L*, and b* values of all mayonnaise samples were observed (p < 0.05). However, a* values were increased at day 30 of storage (p < 0.05). For texture analysis, highest firmness, consistency and cohesiveness were obtained for the sample containing SO. Increasing levels of FO in VCO/FO samples increased the firmness, consistency and cohesiveness. For all the samples, loss modulus (G″) values were lower than G′. After 30 days of storage, all samples demonstrated slight decreases in G′ and viscosity than freshly prepared mayonnaise (day 0). When the sample containing VCO/FO (90:10) blend was further characterized, slight difference was observed in microscopic structure and droplet size distribution before and after storage of 30 days. Increase in droplet size was noticeable because of coalescence after the storage. Overall, type of oil used for preparation of mayonnaise as well as storage time affected the physical properties including textural and rheological properties of mayonnaise.

Keywords

Mayonnaise Virgin coconut oil Fish oil Storage Texture analysis Rheology 

Notes

Acknowledgements

This work was supported by the Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC, 2015) scholarship.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    U. Patil, S. Benjakul, T. Prodpran, T. Senphan, N. Cheetangdee, Carpath. J. Food Sci. Technol 8(4), 103–115 (2016)Google Scholar
  2. 2.
    E. Carandang, Indian Coconut J. Chochin 38(9), 8–12 (2008)Google Scholar
  3. 3.
    M. DebMandal, S. Mandal, Asian Pac J Trop Med 4(3), 241–247 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Senphan, S. Benjakul, Eur. J. Lipid Sci. Technol. 118(5), 761–769 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Hartvigsen, P. Lund, L.F. Hansen, G. Hølmer, J. Agric. Food Chem. 48(10), 4858–4867 (2000)CrossRefGoogle Scholar
  6. 6.
    N. EFSA Panel on Dietetic Products and Allergies, EFSA J. 10(7), 2815 (2012)Google Scholar
  7. 7.
    D. Givens, R. Gibbs, Nutr. Bull. 31(2), 104–110 (2006)CrossRefGoogle Scholar
  8. 8.
    S.G. Gorji, H.E. Smyth, M. Sharma, M. Fitzgerald, Trends Food Sci. Technol. 56, 88–102 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.T. Li Hsieh, J.M. Regenstein, J. Food Sci. 56(5), 1298–1301 (1991)CrossRefGoogle Scholar
  10. 10.
    Y.-T.L. Hsieh, J.M. Regenstein, J. Aquat. Food Prod. T. 1(1), 97–106 (1992)CrossRefGoogle Scholar
  11. 11.
    N.S. Nielsen, A. Petersen, A.S. Meyer, M. Timm-Heinrich, C. Jacobsen, J. Agric. Food Chem. 52(25), 7690–7699 (2004)CrossRefGoogle Scholar
  12. 12.
    N.F. Rahmati, M.M. Tehrani, K. Daneshvar, A. Koocheki, Food Biophys. 10(1), 39–50 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Chotphruethipong, Prince of Songkla University, 2017Google Scholar
  14. 14.
    S.S. Fernandesa, M. de las Mercedes Salas-Mellado, Integr. Food. Nutr. Metab. 5(3), 1–4 (2018)Google Scholar
  15. 15.
    L. Huang, T. Wang, Z. Han, Y. Meng, X. Lu, Food Hydrocoll. 56, 311–317 (2016)CrossRefGoogle Scholar
  16. 16.
    U. Patil, S. Benjakul, Food Hydrocoll. 69, 220–228 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Cermeño, M. Felix, A. Connolly, E. Brennan, B. Coffey, E. Ryan, R.J. FitzGerald, Food Hydrocoll. 88, 170–179 (2019)CrossRefGoogle Scholar
  18. 18.
    R. Steel, J. Torrie, Principles and Practices of Statistics (McGraw Book Coy Inc, New York, USA, 1980)Google Scholar
  19. 19.
    D.J. McClements, Curr. Opin. Colloid Interface Sci. 7(5–6), 451–455 (2002)CrossRefGoogle Scholar
  20. 20.
    E.C. Li-Chan, H.-O. Kim, In Egg bioscience and biotechnology (John Wiley and Sons Inc., New Jersey, 2008) pp. 1-96Google Scholar
  21. 21.
    W. Chantrapornchai, F. Clydesdale, D.J. McClements, Colloids Surf. A Physicochem. Eng. Asp. 155(2–3), 373–382 (1999)CrossRefGoogle Scholar
  22. 22.
    M. Lennersten, H. Lingnert, LWT-Food Sci. Technol. 33(4), 253–260 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Kupongsak, S. Sathitvorapojjana, Pol. J. Food Nutr. Sci. 67(2), 107–116 (2017)CrossRefGoogle Scholar
  24. 24.
    S.S. Bharate, S.B. Bharate, J. Food Sci. Tech. 51(10), 2271–2288 (2014)CrossRefGoogle Scholar
  25. 25.
    D.J. McClements, Food emulsions: principles, practices, and techniques (CRC press, 2015)Google Scholar
  26. 26.
    H. Liu, X. Xu, S.D. Guo, LWT-Food Sci. Technol. 40(6), 946–954 (2007)CrossRefGoogle Scholar
  27. 27.
    D.J. McClements, Langmuir 21(21), 9777–9785 (2005)CrossRefGoogle Scholar
  28. 28.
    F. Mancini, L. Montanari, D. Peressini, P. Fantozzi, LWT-Food Sci. Technol. 35(6), 517–525 (2002)CrossRefGoogle Scholar
  29. 29.
    L.B. Fomuso, M. Corredig, C.C. Akoh, J. Am. Oil Chem. Soc. 78(7), 771–774 (2001)CrossRefGoogle Scholar
  30. 30.
    J. Moros, J. Franco, C. Gallegos, J. Am. Oil Chem. Soc. 79(8), 837–843 (2002)CrossRefGoogle Scholar
  31. 31.
    I.N. Hayati, Y.B.C. Man, C.P. Tan, I.N. Aini, Food Res. Int. 40(8), 1051–1061 (2007)CrossRefGoogle Scholar
  32. 32.
    C. Granger, P. Barey, N. Combe, P. Veschambre, M. Cansell, Colloids Surf. B Biointerfaces 32(4), 353–363 (2003)CrossRefGoogle Scholar
  33. 33.
    M. Langton, E. Jordansson, A. Altskär, C. Sørensen, A.-M. Hermansson, Food Hydrocoll. 13(2), 113–125 (1999)CrossRefGoogle Scholar
  34. 34.
    J. Depree, G. Savage, Trends Food Sci. Technol. 12(5–6), 157–163 (2001)CrossRefGoogle Scholar
  35. 35.
    E. Dickinson, J. Chem. Soc. Faraday Trans. 94(12), 1657–1669 (1998)CrossRefGoogle Scholar
  36. 36.
    R. Pal, Chem. Eng. J. 67(1), 37–44 (1997)CrossRefGoogle Scholar
  37. 37.
    D. Izidoro, M.-R. Sierakowski, N. Waszczynskyj, C.W. Haminiuk, A. de Paula Scheer, Int. J. Food Eng. 3(1), 1–15 (2007)CrossRefGoogle Scholar
  38. 38.
    D.L. Pyle, P.J. Fryer, C.D. Reilly, Chemical Engineering for the Food Industry (Springer Science & Business Media, Cambridge, UK, 2012)Google Scholar
  39. 39.
    S. Mun, Y.-L. Kim, C.-G. Kang, K.-H. Park, J.-Y. Shim, Y.-R. Kim, Int. J. Biol. Macromol. 44(5), 400–407 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Technology, Faculty of Agro-IndustryPrince of Songkla UniversitySongkhlaThailand

Personalised recommendations