Advertisement

Effect of Ohmic Heating on the Formation and Texture of Acid Milk Gels

  • Noemi Caruggi
  • Mara Lucisano
  • Aberham Hailu Feyissa
  • Saeed Rahimi Yazdi
  • Mohammad Amin MohammadifarEmail author
ORIGINAL ARTICLE
  • 16 Downloads

Abstract

This study aimed to describe the effects of ohmic heat treatment (OHT) of milk on the formation and properties of acid milk gels. The influence of voltage gradient (25, 40, 55 V/cm), holding time (2, 16, 30 min), and final temperature (45, 65, 75, 85 °C) on rheological properties and particle size distribution was measured during the gelation process. Texture properties and syneresis of the samples were evaluated at the end of the gelation process. Scanning electron microscopy (SEM) micrographs of the acid milk gels were also taken at pH 4.6(i.e., pI or Isoelectric point of casein). Results indicated that oscillatory time sweep tests were more accurate than particle size measurements in detecting gelation onset. Complex modulus values of the final gel showed that OHT of the milk at 25 V/cm and holding at 85 °C for 16 min gave rise to a 21% higher structural strength compared to when using the conventional heat treatment (CHT) where temperature was 85 °C and holding time and come up time were 30 and 20 min respectively. In other words, by using the OHT milk, the same gel strength as that of CHT 85 °C sample was obtained by spending 185 min instead of 328 min incubation time (i.e., 40% less time). Higher voltage gradient lowered the final gel strength when temperature and holding time kept constant at 85 °C and 16 min respectively. Results indicated that the gel firmness enhanced and the amount of syneresis decreased when CHT was replaced by OHT in the manufacturing process. SEM revealed that the protein matrices of ohmic heating samples appeared to be more compact and denser with smaller pore size than observed in the conventional gel. Results indicated that OHT of milk successfully improves the quality of acid milk gels and obviate the need for increasing dry matter concentration or using additives.

Keywords

Ohmic heating Acid milk gels Preheat treatment Rheology Texture 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    X. Li, C. Ye, Y. Tian, S. Pan, L. Wang, J. Food Process Eng. 41, 1 (2018)Google Scholar
  2. 2.
    I. Castro, J. Teixeira, S. Salengke, S. Sastry, A. Vicente, Innovative Food Sci. Emerg. Technol. 5(1), 27–36 (2004)CrossRefGoogle Scholar
  3. 3.
    S.K. Sastry, J.T. Barach, J. Food Saf. 65, 42–46 (2000)Google Scholar
  4. 4.
    F. Icier, C. Ilicali, J. Food Eng. 69(1), 67–77 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Zell, J.G. Lyng, D.J. Morgan, D.A. Cronin, J. Food Eng. 93(3), 344–347 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Parrott, Food Technol. 46, 68 (1992)Google Scholar
  7. 7.
    D. Reznick, Food Technol. 50, 305 (1996)Google Scholar
  8. 8.
    N. Shirsat, J.G. Lyng, N.P. Brunton, B. McKenna, Meat Sci. 67(3), 507–514 (2004)CrossRefGoogle Scholar
  9. 9.
    H. S. R. Ajaypal Singh, N. S. Rattan, P. T. R. Narayanapurapu, in Ohmic Heating in Food Processing, ed. by H. S. Ramaswamy, M. Marcotte, S. Sastry, K. Abdelrahim, 2nd ed. (Taylor & Francis Group, LLC-CRC Press, 2014), pp. 309–320Google Scholar
  10. 10.
    A.K. Anderson, R. Finkelstein, J. Dairy Sci. 2(5), 374–406 (1919)CrossRefGoogle Scholar
  11. 11.
    B.E. Getchell, Agric. Eng. 16(10), 408–410 (1935)Google Scholar
  12. 12.
    G. Tuker, in Ohmic Heating in Food Processing, ed. by H. S. Ramaswamy, M. Marcotte, S. Sastry, K. Abdelrahim, 2nd ed. (Taylor & Francis Group, LLC-CRC Press, 2014), pp. 321–331Google Scholar
  13. 13.
    B. Bansal, X.D. Chen, Food Bioprod. Process. 84(4), 286–291 (2006)CrossRefGoogle Scholar
  14. 14.
    F. Icier, Food Bioprod. Process. 87(4), 308–316 (2009)CrossRefGoogle Scholar
  15. 15.
    R.N. Pereira, B.W.S. Souza, M.A. Cerqueira, J.A. Teixeira, A.A. Vicente, Biomacromolecules 11(11), 2912–2918 (2010)CrossRefGoogle Scholar
  16. 16.
    T.C.P. Moreira, R.N. Pereira, A.A. Vicente, R.L. da Cunha, Food Res. Int. 116, 628–636 (2019)CrossRefGoogle Scholar
  17. 17.
    S.M. Loveday, A. Sarkar, H. Singh, Trends Food Sci. Technol. 33(1), 5–20 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Jaros, H. Rohm, in Dairy Processing, ed. by G. Smit (Woodhead Publishing Ltd, Cambridge,  2003), pp. 155–184Google Scholar
  19. 19.
    A. Madadlou, Z. Emam-Djomeh, M.E. Mousavi, M. Ehsani, M. Javanmard, D. Sheehan, Comput. Electron. Agric. 68(2), 216–221 (2009)CrossRefGoogle Scholar
  20. 20.
    J.A. Lucey, T. van Vliet, K. Grolle, T. Geurts, P. Walstra, Int. Dairy J. 7(6-7), 381–388 (1997)CrossRefGoogle Scholar
  21. 21.
    A.L.M. Braga, M. Menossi, R.L. Cunha, Int. Dairy J. 16(5), 389–398 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Irene Boye, M. Kalab, I. Alli, C. Yung Ma, LWT - Food Sci. Technol. 33(3), 165–172 (2000)CrossRefGoogle Scholar
  23. 23.
    Y. Peng, D.S. Horne, J.A. Lucey, J. Dairy Sci. 92(7), 2977–2990 (2009)CrossRefGoogle Scholar
  24. 24.
    C.C. Tranchant, D.G. Dalgleish, A.R. Hill, Int. Dairy J. 11(4-7), 483–494 (2001)CrossRefGoogle Scholar
  25. 25.
    S. Balaghi, M.A. Mohammadifar, A. Zargaraan, Food Biophys. 5(1), 59–71 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Tan, M. Nakajima, Food Chem. 92(4), 661–671 (2005)CrossRefGoogle Scholar
  27. 27.
    T. Amatayakul, F. Sherkat, N.P. Shah, Int. J. Dairy Technol. 59(3), 216–221 (2006)CrossRefGoogle Scholar
  28. 28.
    L. Ramchandran, N.P. Shah, LWT - Food Sci. Technol. 43(5), 819–827 (2010)CrossRefGoogle Scholar
  29. 29.
    T. Regnier, S. Combrinck, W. Veldman, W. Du Plooy, Ind. Crop. Prod. 61, 151–159 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Kong, D. Li, L. Wang, B. Bhandari, X.D. Chen, Z. Mao, Int. J. Food Eng. 4, 2 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Tiwari, S. Bhattacharya, J. Food Sci. Technol. 51(1), 75–82 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Ion-Titapiccolo, M. Alexander, M. Corredig, Food Biophys. 8(2), 81–89 (2013)CrossRefGoogle Scholar
  33. 33.
    W.J. Lee, J.A. Lucey, J. Dairy Sci. 87(10), 3153–3164 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Corredig, D.G. Dalgleish, Int. Dairy J. 9(3-6), 233–236 (1999)CrossRefGoogle Scholar
  35. 35.
    B.T. O’Kennedy, J.S. Mounsey, F. Murphy, E. Duggan, P.M. Kelly, Int. Dairy J. 16(10), 1132–1141 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Nejatian, M. Hatami, M.A. Mohammadifar, Int. J. Biol. Macromol. 53, 168–176 (2013)CrossRefGoogle Scholar
  37. 37.
    W.-J. Lee, J.A. Lucey, J. Dairy Sci. 89(7), 2374–2385 (2006)CrossRefGoogle Scholar
  38. 38.
    J.A. Lucey, C.T. Teo, P.A. Munro, H. Singh, J. Dairy Res. 64(4), 591–600 (1997)CrossRefGoogle Scholar
  39. 39.
    S.G. Anema, S.K. Lee, E.K. Lowe, H. Klostermeyer, J. Agric. Food Chem. 52(2), 337–343 (2004)CrossRefGoogle Scholar
  40. 40.
    D.S. Horne, Int. Dairy J. 9(3-6), 261–268 (1999)CrossRefGoogle Scholar
  41. 41.
    J.A. Lucey, M. Tamehana, H. Singh, P.A. Munro, J. Dairy Res. 65, 591 (1998)CrossRefGoogle Scholar
  42. 42.
    J.A. Lucey, M. Tamehana, H. Singh, P.A. Munro, J. Dairy Res. 67(3), 415–427 (2000)CrossRefGoogle Scholar
  43. 43.
    J. A. Lucey, in Milk Proteins: From Expression to Food, ed. by A. Thompson, M. Boland, H. Singh (Elsevier, New York, 2008), pp. 449–481Google Scholar
  44. 44.
    J.A. Lucey, H. Singh, Food Res. Int. 30(7), 529–542 (1997)CrossRefGoogle Scholar
  45. 45.
    D. Khondkar, R.F. Tester, N. Hudson, J. Karkalas, J. Morrow, Food Hydrocoll. 21(8), 1296–1301 (2007)CrossRefGoogle Scholar
  46. 46.
    T. Yoneya, K. Ishibashi, K. Hironaka, K. Yamamoto, Carbohydr. Polym. 53(4), 447–457 (2003)CrossRefGoogle Scholar
  47. 47.
    F.X. Malcata, A.J. Martins, R.N. Pereira, O.L. Ramos, A.A. Vicente, J.A. Teixeira, R.M. Rodrigues, Food Hydrocoll. 43, 329 (2014)Google Scholar
  48. 48.
    R.N. Pereira, J.A. Teixeira, A.A. Vicente, J. Agric. Food Chem. 59(21), 11589–11597 (2011)CrossRefGoogle Scholar
  49. 49.
    W.-J. Lee, J.A. Lucey, J. Texture Stud. 34(5-6), 515–536 (2003)CrossRefGoogle Scholar
  50. 50.
    W.J. Lee, J.A. Lucey, Asian-Australasian J. Anim. Sci. 23, 1127 (2010)Google Scholar
  51. 51.
    P. Walstra, in Cheese Chem. Phys. Microbiol. - Vol. 1, Gen. Asp., ed. by P. F. Fox, 2nd ed. (Chapman and Hall, London, 1993), pp. 141–191Google Scholar
  52. 52.
    R.N. Pereira, R.M. Rodrigues, Ó.L. Ramos, F. Xavier Malcata, J.A. Teixeira, A.A. Vicente, Food Bioprocess Technol. 9(4), 576–587 (2016)CrossRefGoogle Scholar
  53. 53.
    J.A. Lucey, C.T. Teo, P.A. Munro, H. Singh, Food Hydrocoll. 12(2), 159–165 (1998)CrossRefGoogle Scholar
  54. 54.
    H. Yu, L. Wang, K.L. Mccarthy, J. Food Drug Anal. 4, 804 (2016)CrossRefGoogle Scholar
  55. 55.
    F. Nasaruddin, N.L. Chin, Y.A. Yusof, Int. J. Food Prop. 15(3), 495–506 (2012)CrossRefGoogle Scholar
  56. 56.
    O. Sandoval-Castilla, C. Lobato-Calleros, E. Aguirre-Mandujano, E.J. Vernon-Carter, Int. Dairy J. 14(2), 151–159 (2004)CrossRefGoogle Scholar
  57. 57.
    J. Mottar, A. Bassier, M. Joniau, J. Baert, J. Dairy Sci. 72(9), 2247–2256 (1989)CrossRefGoogle Scholar
  58. 58.
    E. Parnellclunies, A. Kakuda, Y. Smith, Milchwissenschaft.​ 42, 413 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food, Environmental and Nutritional SciencesUniversità degli Studi di MilanoMilanItaly
  2. 2.Research Group for Food Production Engineering, National Food InstituteTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Arla Innovation Center, Arla foods8200 Aarhus NDenmark

Personalised recommendations