Advertisement

Water Diffusion in the Semi-Liquid State during Industrial Candy Preparation

  • Valery NormandEmail author
  • Luc Armanet
  • Robert C. McIver
  • Pierre-Etienne Bouquerand
ORIGINAL ARTICLE
  • 8 Downloads

Abstract

In the domain of production of flavor delivery systems based on carbohydrate matrices, Hot Melt Extrusion (HME) is one of the processes used which implies a relatively slow water evaporation step compared to Spray Drying or other common processes. The HME process of generating liquid syrup is stable only at industrial scales. The drying kinetic associated to the syrup formation is followed by collecting the vapored water. This experiment is exploited to estimate the diffusion coefficient of liquid water in a continuously concentrating carbohydrate melt ranging from 30.4 to 10.2%w/w water content and at temperatures ranging from 100 to 116 °C. A combination of Fick, Arnold and Vogel-Tammann-Fulcher models was used to derive the viscosity of the solution, the gradient thickness at the surface of the stirred solution and the diffusion coefficient of water in the liquid under boiling conditions. It is here demonstrated that under continuous boiling conditions, the water concentration gradient depth from the surface of the solution has a dimension that is comparable to the size of the hydrated carbohydrate molecules and the diffusion coefficient of water in boiling carbohydrate solutions ranges from 5.10−9 cm.s−2 for low temperature and high water content to 10−11 cm.s−2 for high temperature and low water content.

Graphical Abstract

Keywords

Durarome® Boiling point elevation Diffusion coefficient Melt viscosity Phase transition 

Notes

References

  1. 1.
    A. Subramaniam, R. Veazey, A. Schober, A. Rada, Y. Rong, R. van Sleeuwen, R. Golding, S. Zhang, V. Normand, Carbohydr. Polym. 97, 352 (2013)CrossRefGoogle Scholar
  2. 2.
    H.H. Tønnesen, In Photostability of Drugs and Drug Formulations 2nd edn. Ed. By H.H. Tonnesen (CRC Press, Boca Raton, London, New York, Washington, D.C., 2004), p. 351Google Scholar
  3. 3.
    P.-E. Bouquerand, S. Maio, D. Atkins, S. Singleton, V. Normand, AICHE J. 50, 3257 (2004)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    A.M. Striegel, R.D. Plattner, J.L. Willett, Polym. Prepr. 39, 727 (1998)Google Scholar
  6. 6.
    Y. Roos, M. Karel, Biotechnol. Prog. 7, 49 (1991)CrossRefGoogle Scholar
  7. 7.
    Y. Roos, M. Karel, J. Food Sci. 56, 38 (1991)CrossRefGoogle Scholar
  8. 8.
    V. Normand, A. Subramaniam, J. Donnelly, P.-E. Bouquerand, Carbohydr. Polym. 97, 489 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Leuenberger, J. Nanoparticle Res. 4, 111 (2002)CrossRefGoogle Scholar
  10. 10.
    G.D. Valle, B. Vergnes, P. Colonna, A. Patria, J. Food Eng. 31, 277 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Porzio, Perfum. Flavor. 33, 48 (2008)Google Scholar
  12. 12.
    B. Launay, J.M. Lisch, J. Food Eng. 2, 259 (1983)CrossRefGoogle Scholar
  13. 13.
    C. Beetz, R. Corbett, D. Salem, US Patent 8,939,388 B1 (2015)Google Scholar
  14. 14.
    E.E. Beck, US Patent 3, 704,137 (1972)Google Scholar
  15. 15.
    D.M. Bohn, K.R. Cadwallader, S.J. Schmidt, J. Food Sci. 70, E109 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Gouin, Trends Food Sci. Tech. 15, 330 (2004)CrossRefGoogle Scholar
  17. 17.
    L. Sair, R.A. Sair US Patent 4,232,047 (1980)Google Scholar
  18. 18.
    L. Sair, R.A. Sair, US Patent 4, 230,687 (1980)Google Scholar
  19. 19.
    H.P. Grace, Chem. Eng. Commun. 14, 225 (1982)CrossRefGoogle Scholar
  20. 20.
    F. Avaltroni, P.-E. Bouquerand, V. Normand, Carbohydr. Polym. 58, 323 (2004)CrossRefGoogle Scholar
  21. 21.
    J.E. Tanner, E.O. Stejskal, J. Chem. Phys. 49, 1768 (1968)CrossRefGoogle Scholar
  22. 22.
    M. Sillick, C. Gregson, Carbohydr. Polym. 78, 879 (2009)CrossRefGoogle Scholar
  23. 23.
    W.L. Kerr, D.S. Reid, LWT – Food Sci. Technol 27, 225 (1994)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    C.A. Angell, Chem. Rev. 102, 2627 (2002)CrossRefGoogle Scholar
  26. 26.
    C.J. Tressler, W.I. Zimmerman, C.O. Willits, J. Phys. Chem. 45, 1242 (1941)CrossRefGoogle Scholar
  27. 27.
    M. Saska, Int. Sugar J. 104, 1247 (2002)Google Scholar
  28. 28.
    J. Defaye, J.M.G. Fernandez, V. Ratsimba, Actual. Chim. 11, 24 (2000)Google Scholar
  29. 29.
    R. van Sleeuwen, A. Gosse, V. Normand, J. Food Sci.: Food Engineering and Physical Properties 78, E1022 (2013)CrossRefGoogle Scholar
  30. 30.
    R.M.T. van Sleeuwen, S. Zhang, V. Normand, Biomacromolecules 13, 787 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Das, E. Flenner, I. Kosztin, J. Chem. Phys. 139, 065102 (2013)CrossRefGoogle Scholar
  32. 32.
    N.A. Peppas, J.C. Wu, E.D. von Meerwall, Macromolecules 27, 5626 (1994)CrossRefGoogle Scholar
  33. 33.
    L. Ouali, G. Leon, V. Normand, D. Benczédi, H. Johnsen, A. Dyrli, R. Schmid, Polymer for Advanced Technologies 17, 45 (2006)CrossRefGoogle Scholar
  34. 34.
    K. Aeberhardt, J.-Y. de Saint Laumer, P.-E. Bouquerand, V. Normand, Int. J. Biol. Macromol. 36, 275 (2005)CrossRefGoogle Scholar
  35. 35.
    J.H. Arnold, J. Am. Chem. Soc. 52, 3937 (1930)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Firmenich Inc.PlainsboroUSA
  2. 2.FirmenichAnaheimUSA
  3. 3.FirmenichMeyrin 2Switzerland

Personalised recommendations