Effect of β-Cyclodextrin on the Quality of Wheat Flour Dough and Prebaked Bread

  • Jianjun Zhou
  • Heng Yang
  • Xinguang Qin
  • Xianqin Hu
  • Gang LiuEmail author
  • Xuedong WangEmail author


This work investigated the effects of the addition of different concentrations (0–3.0 wt%) of β-cyclodextrin (β-CD) on the properties of wheat dough and prebaked bread. Dough tensile test results and scanning electron microscopy revealed that the addition of 0.5–1.5 wt% β-CD enhanced dough tensile strength and promoted gluten formation. The addition of 2.0–3.0 wt% β-CD, however, failed to improve gluten network formation. Fourier transform infrared spectroscopy showed that the α-helix-to-β-sheet ratios of dough samples increased as β-CD content increased. This result indicated that the protein secondary structure of the dough had changed. Fermentation rheometry illustrated that dough fermentation height, gas production volume, and gas-holding capacity increased with the addition of 0–1.5 wt% β-CD. Dough fermentation capacity decreased when the addition of β-CD exceeded 2.0 wt%. The effect of β-CD on the quality of prebaked frozen bread was also studied. The results of texture profile analysis indicated that the addition of 1.5 wt% β-CD could reduce bread hardness and increase bread crumb elasticity and resilience. The results of the C-cell test further demonstrated that the addition of 1.5 wt% β-CD could increase stomatal number and decrease pore number and pore wall thickness. These characteristics suggested that the addition of β-CD improved bread structure.


β-CD Wheat flour dough SEM FTIR Fermentation rheometer Prebaked frozen bread 



This work is funded by the Open Project Fund of the Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University) and Science and Technology Support Program of Hubei Province, China (2015BBA167). The authors would also like to express their appreciation for the support provided by the Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University).


  1. 1.
    A. Le-Bail, D. Gabric, Breadmaking, 661–686 (2012)Google Scholar
  2. 2.
    M. Fik, K. Surowka, J. Sci. Food Agric. 82(11), 1268–1275 (2002)Google Scholar
  3. 3.
    E. Debonne, F.V. Bockstaele, E. Philipps, I.D. Leyn, M. Eecjhout, LWT Food Sci. Technol. 78, 16–22 (2017)Google Scholar
  4. 4.
    E.L. Almeida, Y.K. Chang, LWT Food Sci. Technol. 49(1), 56–61 (2012)Google Scholar
  5. 5.
    M.E. Bárcenas, M. Haros, C.M. Rosell, Eur. Food Res. Technol. 218(1), 56–61 (2003)Google Scholar
  6. 6.
    G. Shikhar, G.C. Soni, S.K. Jain, Int. J. Pharmaceut. 3(10) (2012)Google Scholar
  7. 7.
    V.J. Stella, Q. He, Toxicol. Pathol. 36(1), 30–42 (2008)Google Scholar
  8. 8.
    J. Zhan, Y. Tian, Q. Tong, Carbohydr. Polym. 91(2), 609–612 (2013)Google Scholar
  9. 9.
    N. Qiu, X. Li, J. Liu, J. Incl. Phenom. Macrocycl. Chem. 89(2), 1–18 (2017)Google Scholar
  10. 10.
    C. Jouquand, V. Ducruet, P. Giampaoli, Food Chem. 85(3), 467–474 (2004)Google Scholar
  11. 11.
    Chen, Q., Chemical Industry Times, (2007)Google Scholar
  12. 12.
    Y.Q. Tian, Y. Li, Z.Y. Jin, X.M. Xu, J.P. Wang, A.Q. Jiao, B. Yu, T. Talba, Thermochim. Acta 489(1), 22–26 (2009)Google Scholar
  13. 13.
    N.R. Ponzio, C. Ferrero, M.C. Puppo, Int. J. Food Prop. 16(1), 33–44 (2013)Google Scholar
  14. 14.
    S. Meziani, J. Jasniewski, C. Gaiani, I. Ioannou, J.M. Muller, M. Ghoul, S. Desobry, J. Food Eng. 107(3-4), 358–365 (2011)Google Scholar
  15. 15.
    C. Verheyen, A. Albrecht, D. Elgeti, M. Jekle, T. Becker, Food Res. Int. 76(Pt 3), 860–866 (2015)Google Scholar
  16. 16.
    E.L. Almeida, Y.K. Chang, LWT Food Sci. Technol. 49(1), 64–72 (2012)Google Scholar
  17. 17.
    T.H. Mccann, M.L. Gall, D. Li, J. Cereal Sci. 69, 228–237 (2016)Google Scholar
  18. 18.
    F.I. Yue, X.A. Guo, K.U. Zhu, Cereal Chem. 94(5), 881–886 (2017)Google Scholar
  19. 19.
    F. Macritchie, Adv. Food Nutr. Res. 36, 1–87 (1992)Google Scholar
  20. 20.
    C.G. Biliaderis, G. Galloway, Carbohydr. Res. 189(12), 31–48 (1989)Google Scholar
  21. 21.
    N.W. Tschoegl, J.A. Rinde, T.L. Smith, Rheol. Acta 9(2), 223–238 (1970)Google Scholar
  22. 22.
    A.H. Bloksma, Cereal Foods World 35 (1990)Google Scholar
  23. 23.
    T. Amend, H.D. Belitz, Z. Lebensm. Unters. Forsch. 190(5), 401–409 (1990)Google Scholar
  24. 24.
    O. Paredeslopez, W. Bushuk, Cereal Chem. 60(1), 24–27 (1983)Google Scholar
  25. 25.
    B. Schiedt, A. Baumann, B. Conde-Petit, T.A. Vilgis, J. Texture Stud. 44(4), 317–332 (2013)Google Scholar
  26. 26.
    M. Kokawa, K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, H. Nabetani, J. Cereal Sci. 55(1), 15–21 (2012)Google Scholar
  27. 27.
    D. Duchene, A. Bochot, Int. J. Pharm. 514(1), 58–72 (2016)Google Scholar
  28. 28.
    B.R. Singh, M.P. Fuller, G. Schiavo, Biophys. Chem. 36(2), 155–166 (1990)Google Scholar
  29. 29.
    K.G. Duodu, H. Tang, A. Grant, N. Wellner, P.S. Belton, J.R.N. Taylor, J. Cereal Sci. 33(3), 261–269 (2001)Google Scholar
  30. 30.
    Q. Zhang, Y. Shen, A. Xie, B. Xia, Spectrosc. Spectr. Anal. 20(6), 781–784 (2002)Google Scholar
  31. 31.
    P.R. Santagapita, L.G. Brizuela, M.F. Mazzobre, H.L. Ramírez, H.R. Corti, R.V. Santana, M. Pilarbuer, Carbohydr. Polym. 83(1), 203–209 (2011)Google Scholar
  32. 32.
    S.B. Larson, A. Greenwood, D. Cascio, J. Day, A. Mcpherson, J. Mol. Biol. 235(5), 1560–1584 (1994)Google Scholar
  33. 33.
    B. Mikami, E.J. Hehre, M. Sato, Y. Katsube, M. Hirose, Y. Morita, J.C. Sacchettini, Biochemistry 32(27), 6836–6845 (1993)Google Scholar
  34. 34.
    M. Wang, Z. Jin, L.Y. Liu, Z. Wang, F. Li, W. Sun, H.Y. Cai, X. Chen, W.Y. Shen, Z.Z. Zhu, F.J. Barba, W. Zhang, J. Incl. Phenom. Macrocycl. Chem. 90(1), 1–6 (2018)Google Scholar
  35. 35.
    Z. Czuchajowska, Y. Pomerana, Cereal Foods World 38(7), 499–503 (1993)Google Scholar
  36. 36.
    M. Gómez, S. Jiménez, E. Ruiz, B. Oliete, LWT-Food Sci. Technol. 44(10), 2231–2237 (2011)Google Scholar
  37. 37.
    M.N. Rezaei, V.B. Jayaram, K.J. Verstrepen, C.M. Courtin, J. Sci. Food Agric. 96(11), 3741–3748 (2016)Google Scholar
  38. 38.
    J. Hargreaves, Y. Popineau, M.L. Meste, M.A. Hemminga, FEBS Lett. 372(1), 103–107 (1995)Google Scholar
  39. 39.
    T. Vanvliet, A.M. Janssen, A.H. Bloksma, P. Walstra, J. Texture Stud. 23(4), 439–460 (2010)Google Scholar
  40. 40.
    A.R. Shah, R.K. Shah, D. Madamwar, Bioresour. Technol. 97(16), 2047–2053 (2006)Google Scholar
  41. 41.
    J.K. Purhagen, M.E. Sjöö, A.C. Eliasson, Food Hydrocoll 25(7), 1656–1666 (2011)Google Scholar
  42. 42.
    V. Lampignano, J. Laverse, M. Mastromatteo, M.A.D. Nobile, Food Res. Int. 50(1), 369–376 (2013)Google Scholar
  43. 43.
    S.M. He, D.S. Chen, Y. Zhan, Z.H. He, Sci. Agric. Sin. (2007)Google Scholar
  44. 44.
    P. Shah, G.M. Campbell, S.L. Mckee, C.D. Rielly, Food Bioprod. Process. 76(2), 73–79 (1998)Google Scholar
  45. 45.
    M. G. Scanlon, H. D. Saoirstein, in Elucidation: The Bushuk legacy supply chain (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of EducationWuhan Polytechnic UniversityWuhanChina
  2. 2.College of Food Science and EngineeringWuhan Polytechnic UniversityWuhanChina
  3. 3.Hubei Key Laboratory for Processing and Transformation of Agricultural ProductsWuhan Polytechnic UniversityWuhanChina
  4. 4.Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan Polytechnic UniversityWuhan CityChina

Personalised recommendations