Advertisement

Food Biophysics

, Volume 14, Issue 1, pp 30–40 | Cite as

Effect of Water Addition on Physical Properties of Emulsion Gels

  • Thais Lomonaco Teodoro da SilvaEmail author
  • Daniel Barrera Arellano
  • Silvana Martini
ORIGINAL ARTICLE
  • 99 Downloads

Abstract

The aim of this work was to evaluate how the physical properties of oleogels formulated with candelilla wax (CLX), monoglycerides (MG), and hardfat (HF) change with the addition of 1–30% water (w/w). Physical properties such as crystal microstructure, melting and rheological behavior, hardness, oil binding capacity, and thermal stability were evaluated. The oleogels evaluated in this study formed stable water-in-oil emulsion gels at 25 °C without the use of additional emulsifiers. The water addition in a range from 1 to 20% (w/w) resulted in a reduction in crystal size (Dm) from approximately 10 μm for the oleogel to less than 8 μm for the emulsion gels. This reduction in crystal size suggests that a well-organized crystalline network was formed in the emulsion gels resulting in improved physical properties. Emulsion gels with 1 to 20% (w/w) water showed a narrower melting profile, higher firmness, and lower oil loss compared to those of oleogel, and showed higher stability after temperature cycling at 40 °C. Samples with 1 and 5% w/w of water showed the best improvement in physical properties since they were 3 times harder than the respective oleogel with values of 0.42 N for the emulsions and 0.15 N for the oleogel. Also, the water addition increased G’ value from 4132.92 Pa for oleogel to 13157.78 Pa for emulsion with 1% water and 9702.35 Pa for emulsion with 5% water. The obtained results suggest that water amount up to 20% (w/w) can be added to oleogel to form stable emulsion gels.

Keywords

Emulsion gel Oleogel Candelilla wax Monoglyceride Physical properties 

Notes

Acknowledgements

The authors would like the express their gratitude for the Department of Nutrition, Dietetics, and Food Science of Utah State University and Capes for the international scholarship (n° 88881.134926/2016-01). This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9047.

References

  1. 1.
    H.D. Batte, A.J. Wright, J.W. Rush, S.H.J. Idziak, A.G. Marangoni, Food Biophys. 2(1), 29–37 (2007)CrossRefGoogle Scholar
  2. 2.
    E.D. Co, A.G. Marangoni, JAOCS, J. Am. Oil Chem. Soc. 89, 749 (2012)CrossRefGoogle Scholar
  3. 3.
    L.S.K. Dassanayake, D.R. Kodali, S. Ueno, Curr. Opin. Colloid Interface Sci. 16(5), 432–439 (2011)CrossRefGoogle Scholar
  4. 4.
    A.I. Blake, A.G. Marangoni, Food Biophys. 10(4), 403–415 (2015)CrossRefGoogle Scholar
  5. 5.
    J.C.B. Rocha, J.D. Lopes, M.C.N. Mascarenhas, D.B. Arellano, L.M.R. Guerreiro, R.L. da Cunha, Food Res. Int. 50(1), 318–323 (2013)CrossRefGoogle Scholar
  6. 6.
    W. Limpimwong, T. Kumrungsee, N. Kato, N. Yanaka, M. Thongngam, J. Funct. Foods 39, 250–256 (2017)CrossRefGoogle Scholar
  7. 7.
    L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, JAOCS, J. Am. Oil Chem. Soc. 86(12), 1163–1173 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Pandolsook, S. Kupongsak, J. Food Eng. 214, 182–192 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Ögütcü, N. Arifoglu, E. Yilmaz, JAOCS, J. Am. Oil Chem. Soc. 92, 459 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Perez-Martinez, C. Alvarez-Salas, M. Charo-Alonso, E. Dibildox-Alvarado, J.F. Toro-Vazquez, Food Res. Int. 40(1), 47–62 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Martini, C.Y. Tan, S. Jana, J. Food Sci. 80(5), C989–C997 (2015)CrossRefGoogle Scholar
  12. 12.
    M.D. Bin Sintang, T. Rimaux, D. Van de Walle, K. Dewettinck, A.R. Patel, Eur. J. Lipid Sci. Technol. 119(1) (2017)Google Scholar
  13. 13.
    E. Kesselman, E. Shimoni, Food Biophys. 2(2-3), 117–123 (2007)CrossRefGoogle Scholar
  14. 14.
    A.G. Marangoni, S.H.J. Idziak, J.W.E. Rush, Food Biophys. 3(2), 241–245 (2008)CrossRefGoogle Scholar
  15. 15.
    C.H. Chen, E.M. Terentjev, Langmuir 25(12), 6717–6724 (2009)CrossRefGoogle Scholar
  16. 16.
    D.C.Z. Botega, A.G. Marangoni, A.K. Smith, H.D. Goff, J. Food Sci. 78, 1845 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Panagiotopoulou, T. Moschakis, E. Katsanidis, LWT - food Sci. Technol. 73, 351 (2016)Google Scholar
  18. 18.
    A.K. Zetzl, A.G. Marangoni, S. Barbut, Food Funct. 3(3), 327–337 (2012)CrossRefGoogle Scholar
  19. 19.
    H.S. Hwang, M. Singh, E.L. Bakota, J.K. Winkler-Moser, S. Kim, S.X. Liu, JAOCS, J. Am. Oil Chem. Soc. 90(11), 1705–1712 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Ögutcu, E. Yilmaz, Grasas Aceites 65, 1 (2014)Google Scholar
  21. 21.
    E. Yilmaz, M. Ogutcu, R. Soc, Chem. 5, 50259 (2015)Google Scholar
  22. 22.
    T. Moschakis, I. Dergiade, A. Lazaridou, C.G. Biliaderis, E. Katsanidis, J. Funct. Foods 33, 386–395 (2017)CrossRefGoogle Scholar
  23. 23.
    T. Moschakis, E. Panagiotopoulou, E. Katsanidis, LWT - food Sci. Technol. 73, 153 (2016)Google Scholar
  24. 24.
    F.Y. Ushikubo, R.L. Cunha, Food Hydrocoll. 34, 145–153 (2014)CrossRefGoogle Scholar
  25. 25.
    J.F. Toro-Vazquez, R. Mauricio-Pérez, M.M. González-Chávez, M. Sánchez-Becerril, J.d.J. Ornelas-Paz, J.D. Pérez-Martínez, Food Res. Int. 54(2), 1360–1368 (2013)CrossRefGoogle Scholar
  26. 26.
    A.R. Patel, D. Schatteman, W.H. De Vos, A. Lesaffer, K. Dewettinck, J. Colloid Interface Sci. 411, 114–121 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Singh, F.I. Auzanneau, M.A. Rogers, Food Res. Int. 97, 307–317 (2017)CrossRefGoogle Scholar
  28. 28.
    L. Sagalowicz, M.E. Leser, H.J. Watzke, M. Michel, Trends Food Sci. Technol. 17(5), 204–214 (2006)CrossRefGoogle Scholar
  29. 29.
    M.A. Cerqueira, L.H. Fasolin, C.S.F. Picone, L.M. Pastrana, R.L. Cunha, A.A. Vicente, Food Res. Int. 96, 161–170 (2017)CrossRefGoogle Scholar
  30. 30.
    A.I. Blake, A.G. Marangoni, Food Struct. 3, 30–34 (2015)CrossRefGoogle Scholar
  31. 31.
    C.D. Doan, V.D.W. Davy, A.R. Patel, K. Dewettinck, J. Am. Oil Chem. Soc. 92(6), 801–811 (2015)CrossRefGoogle Scholar
  32. 32.
    H.-S. Hwang, K. Sanghoon, M. Singh, J.K. Winkler-Moser, S.X. Liu, J. Am. Oil Chem. Soc. 89(4), 639–647 (2012)CrossRefGoogle Scholar
  33. 33.
    J.F. Toro-Vazquez, J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, M. Alonzo-Macias, M.M. González-Chávez, JAOCS, J. Am. Oil Chem. Soc. 84(11), 989–1000 (2007)CrossRefGoogle Scholar
  34. 34.
    G.M. de Oliveira, A.P.B. Ribeiro, T.G. Kieckbusch, LWT Food Sci. Technol. 63(2), 1155–1162 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Chopin-Doroteo, J.A. Morales-Rueda, E. Dibildox-Alvarado, M.A. Charó-Alonso, A. de la Peña-Gil, J.F. Toro-Vazquez, Food Biophys. 6(3), 359–376 (2011)CrossRefGoogle Scholar
  36. 36.
    J.F. Toro-Vazquez, M. Alonzo-Macias, E. Dibildox-Alvarado, M.A. Charó-Alonso, Food Biophys. 4(3), 199–212 (2009)CrossRefGoogle Scholar
  37. 37.
    X. Chen, K. Liu, P. He, H. Zhang, Y. Fang, Langmuir 28(25), 9275–9281 (2012)CrossRefGoogle Scholar
  38. 38.
    C.D. Doan, I. Tavernier, S. Danthine, T. Rimaux, K. Dewettinck, J. Sci. Food Agric. 98(3), 1042–1051 (2018)CrossRefGoogle Scholar
  39. 39.
    R.M. Kerr, X. Tombokan, S. Ghosh, S. Martini, J. Agric. Food Chem. 59(6), 2689–2695 (2011)CrossRefGoogle Scholar
  40. 40.
    T.L.T. da Silva, D.B. Arellano, S. Martini, J. Am. Oil Chem. Soc. 95(7), 797–811 (2018)CrossRefGoogle Scholar
  41. 41.
    A.C.K. Sato, R.L. da Cunha, Ciência e Tecnol. Aliment. 27(4), 890–896 (2007)CrossRefGoogle Scholar
  42. 42.
    J. F. Steffe, Rheological methods in food process engineering, second (freeman press, East Lansing, MI, USA, 1996)Google Scholar
  43. 43.
    J.V. Kadamne, E.A. Ifeduba, C.C. Akoh, S. Martini, J. Am. Oil Chem. Soc. 94(1), 3–18 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Rønholt, A.S. Madsen, J.J.K. Kirkensgaard, K. Mortensen, J.C. Knudsen, Food Struct. 2(1-2), 14–26 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Rønholt, J.J.K. Kirkensgaard, K. Mortensen, J.C. Knudsen, Food Hydrocoll. 34, 169–176 (2014)CrossRefGoogle Scholar
  46. 46.
    F.C. Wang, A.G. Marangoni, RSC Adv. 5(54), 43121–43129 (2015)CrossRefGoogle Scholar
  47. 47.
    M.P. Pérez, J.R. Wagner, A.L. Márquez, J. Am. Oil Chem. Soc. 93(6), 793–801 (2016)CrossRefGoogle Scholar
  48. 48.
    A. Pawlik, D. Kurukji, I. Norton, F. Spyropoulos, Food Funct. 7(6), 2712–2721 (2016)CrossRefGoogle Scholar
  49. 49.
    R. Rafanan and D. Rousseau, 99, 355 (2017)Google Scholar
  50. 50.
    A. Bot, Y.S.J. Veldhuizen, R. den Adel, E.C. Roijers, Food Hydrocoll. 23(4), 1184–1189 (2009)CrossRefGoogle Scholar
  51. 51.
    J.F. Toro-Vazquez, J. Morales-Rueda, A. Torres-Martínez, M.A. Charó-Alonso, V.A. Mallia, R.G. Weiss, Langmuir 29(25), 7642–7654 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thais Lomonaco Teodoro da Silva
    • 1
    Email author
  • Daniel Barrera Arellano
    • 1
  • Silvana Martini
    • 2
  1. 1.Department of Food Technology, Faculty of Food EngineeringUniversity of Campinas (Unicamp)CampinasBrazil
  2. 2.Department of Nutrition, Dietetics, and Food ScienceUtah State UniversityLoganUSA

Personalised recommendations