Advertisement

Food Biophysics

, Volume 13, Issue 4, pp 422–431 | Cite as

Methods for Screening Cloud Point Temperatures

  • J. Pincemaille
  • A. Banc
  • E. Chauveau
  • J.-M. Fromental
  • L. Ramos
  • M.-H. Morel
  • P. Menut
ORIGINAL ARTICLE

Abstract

A novel and simple method for the measurement of cloud point temperatures of solutions is presented. Cloud point determination, which is currently used to establish the phase diagrams of protein solutions, is indicative of proteins interactions and constitutes a useful tool for food products engineering. We describe a novel experimental setup that allows screening of a large number of physical-chemical conditions in one measurement and the determination of cloud point temperatures both above and below ambient temperature. We use a simple method to avoid solvent evaporation and condensation, so that the set-up can be used for solutions prepared with a volatile solvent. We present the operating parameter range and the precision of the measurement. The optical properties of the system are calibrated with solutions of known transmittance, and the determination of cloud point temperatures is validated on a standard non-ionic surfactant solution. Finally, we demonstrate the efficiency of the method by determining the phase diagram of a wheat protein extract, soluble in a water/ethanol mixture. Complemented with differential scanning calorimetry measurements, the liquid-liquid phase transition can be determined up to a protein concentration of 250 g/L, a range inaccessible with conventional methods for this protein extract.

Keywords

Phase diagram Cloud point Liquid-liquid phase separation Triton TX-114 Wheat gluten Microplate 

Notes

Acknowledgments

The authors acknowledge the Doctorale School GAIA and the Labex Numev (ANR-10-LAB-20) for the financial support of the PhD grant of J. Pincemaille. We also thank the CEPIA department of INRA and the scientific council of Montpellier SupAgro for financial support. Pascal Martinez, Eric Alibert and Sébastien Gaucel are thanked for their technical support for the set-up configuration.

Supplementary material

11483_2018_9548_MOESM1_ESM.docx (150 kb)
ESM 1 (DOCX 149 kb)

References

  1. 1.
    N. Asherie, Methods 34(3), 266–272 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Thomson, P. Schurtenberger, G.M. Thurston, G.B. Benedek, Proc. Natl. Acad. 84(20), 7079–7083 (1987)CrossRefGoogle Scholar
  3. 3.
    T. Gibaud, F.F. Cardinaux, J. Bergenholtz, A. Stradner, P. Schurtenberger, Soft Matter 7(3), 857–860 (2011)CrossRefGoogle Scholar
  4. 4.
    M. Kastelic, Y.V. Kalyuzhnyi, B. Hribar-Lee, K.A. Dill, V. Vlachy, Proc. Natl. Acad. Sci. 112(21), 6766–6770 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Vreeker, L.L. Hoekstra, D.C. den Boer, W.G.M. Agterof, Food Hydrocoll. 6(5), 423–435 (1992)CrossRefGoogle Scholar
  6. 6.
    T. Gibaud, N. Mahmoudi, J. Oberdisse, P. Lindner, J.S. Pedersen, C.L.P. Oliveira, A. Stradner, P. Schurtenberger, Faraday Discuss. 158, 267 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Le Bon, T. Nicolai, D. Durand, Macromolecules 32(19), 6120–6127 (1999)CrossRefGoogle Scholar
  8. 8.
    N. Mahmoudi, A. Stradner, J. Phys. Chem. B 119(50), 15522–15529 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Mahmoudi, A. Stradner, Soft Matter 13(26), 4629–4635 (2017)CrossRefGoogle Scholar
  10. 10.
    C.G. De Kruif, F. Weinbreck, R. De Vries, Curr. Opin. Colloid Interface Sci. 9(5), 340–349 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Nigen, T. Croguennec, D. Renard, S. Bouhallab, Biochemistry 46(5), 1248–1255 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Elbaum-Garfinkle, Y. Kim, K. Szczepaniak, C.C.-H. Chen, C.R. Eckmann, S. Myong, C.P. Brangwynne, Proc. Natl. Acad. Sci. 112(23), 7189–7194 (2015)CrossRefGoogle Scholar
  13. 13.
    W.L. Hinze, E. Pramauro, Crit. Rev. Anal. Chem. 24(2), 133–177 (1993)CrossRefGoogle Scholar
  14. 14.
    J.G. Pryde, Trends Biochem. Sci. 11(4), 160–163 (1986)CrossRefGoogle Scholar
  15. 15.
    Y.J. Nikas, C.L. Liu, T. Srivastava, N.L. Abbott, D. Blankschtein, Macromolecules 25(18), 4797–4806 (1992)CrossRefGoogle Scholar
  16. 16.
    C.L. Liu, D.T. Kamei, J.A. King, D.I. Wang, D. Blankschtein, J. Chromatogr. B Biomed. Sci. Appl. 711(1-2), 127–138 (1998)CrossRefGoogle Scholar
  17. 17.
    G.N. Pozdnyshev, A.A. Emkov, M.M. Shagibekova, D.P. Voronchikhina, Chem. Technol. Fuels Oils 14(7), 540–542 (1978)CrossRefGoogle Scholar
  18. 18.
    G.T. Hefter, A.F.M. Barton, A.L.B.-S.-R. Chand, J. Chem. Soc. Faraday Trans. 87(4), 591 (1991)CrossRefGoogle Scholar
  19. 19.
    J.P. Chen, H.J. Yang, A.S. Hoffman, Biomaterials 11(9), 625–630 (1990)CrossRefGoogle Scholar
  20. 20.
    M.L. Broide, T.M. Tominc, M.D. Saxowsky, Phys. Rev. E 53(6), 6325–6335 (1996)CrossRefGoogle Scholar
  21. 21.
    C. Liu, N. Asherie, A. Lomakin, J. Pande, O. Ogun, G.B. Benedek, Proc. Natl. Acad. Sci. U. S. A. 93(1), 377–382 (1996)CrossRefGoogle Scholar
  22. 22.
    A. Boire, P. Menut, M.-H. Morel, C. Sanchez, Soft Matter 9(47), 11417 (2013)CrossRefGoogle Scholar
  23. 23.
    V.G. Taratuta, A. Holschbach, G.M. Thurston, D. Blankschtein, G.B. Benedek, J. Phys. Chem. 94(5), 2140–2144 (1990)CrossRefGoogle Scholar
  24. 24.
    M. Muschol, F. Rosenberger, J. Chem. Phys. 107(6), 1953–1962 (1997)CrossRefGoogle Scholar
  25. 25.
    J.J. Grigsby, H.W. Blanch, J.M. Prausnitz, Biophys. Chem. 91(3), 231–243 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Corti, C. Minero, L. Cantu’, and R. Piazza, Colloids Surf. 12, 341 (1984), 356CrossRefGoogle Scholar
  27. 27.
    H. Mao, C. Li, Y. Zhang, D.E. Bergbreiter, P.S. Cremer, J. Am. Chem. Soc. 125(10), 2850–2851 (2003)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, P.S. Cremer, Proc. Natl. Acad. Sci. 106(36), 15249–15253 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Amine, A. Boire, J. Davy, M. Marquis, D. Renard, Food Hydrocoll. 70, 134–142 (2017)CrossRefGoogle Scholar
  30. 30.
    A.D.P.M. Da Silva, P.B. De Oliveira, T.B. Bandini, A.G. Barreto Junior, R.C. De Sena, J.F.C. Da Silva, Sensors Actuators B Chem. 177, 1071 (2013)CrossRefGoogle Scholar
  31. 31.
    A.P. Williamson, J. Kiefer, Chem. Eng. Technol. 37(10), 1736–1740 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Imani, H. Modarress, A. Eliassi, M. Abdous, J. Chem. Thermodyn. 41(7), 893–896 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Nozary, H. Modarress, A. Eliassi, J. Appl. Polym. Sci. 89(7), 1983–1990 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Mohsen-Nia, H. Rasa, H. Modarress, J. Chem. Eng. Data 51(4), 1316–1320 (2006)CrossRefGoogle Scholar
  35. 35.
    N. Kitabatake, E. Doi, Y. Kinekawa, J. Food Sci. 59(4), 769–772 (1994)CrossRefGoogle Scholar
  36. 36.
    L. Li, A. Kantor, N. Warne, Protein Sci. 22(8), 1118–1123 (2013)CrossRefGoogle Scholar
  37. 37.
    M.P. Tombs, B.G. Newsom, P. Wilding, Int. J. Pept. Protein Res. 6, 253 (1974)CrossRefGoogle Scholar
  38. 38.
    I.A. Popello, V.V. Suchkov, V.Y. Grinberg, V.B. Tolstoguzov, J. Sci. Food Agric. 54(2), 239–244 (1991)CrossRefGoogle Scholar
  39. 39.
    T. B. Osborne, The Proteins of the Wheat Kernel (Washington, 1907)Google Scholar
  40. 40.
    M.A. Bos, T. Van Vliet, Adv. Colloid Interf. Sci. 91(3), 437–471 (2001)CrossRefGoogle Scholar
  41. 41.
    M. Dahesh, A. Banc, A. Duri, M. Morel, L. Ramos, J. Phys. Chem. B 118(38), 11065–11076 (2014)CrossRefGoogle Scholar
  42. 42.
    Z. Zhang, M.G. Scanlon, J. Cereal Sci. 54(2), 181–186 (2011)CrossRefGoogle Scholar
  43. 43.
    C. Bordier, J. Biol. Chem. 256, 1604 (1981)PubMedGoogle Scholar
  44. 44.
    T. Gu, P.A. Galera-Gomez, Colloids Surf. A Physicochem. Eng. Asp. 104(2-3), 307–312 (1995)CrossRefGoogle Scholar
  45. 45.
    L. Koshy, A.H. Saiyad, A.K. Rakshit, Colloid Polym. Sci. 274(6), 582–587 (1996)CrossRefGoogle Scholar
  46. 46.
    L. Qiao, A.J. Easteal, Colloid Polym. Sci. 276(4), 313–320 (1998)CrossRefGoogle Scholar
  47. 47.
    A. Bouchoux, P. Qu, P. Bacchin, G. Gésan-Guiziou, Langmuir 30(1), 22–34 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Dahesh, A. Banc, A. Duri, M.-H. Morel, L. Ramos, Food Hydrocoll. 52, 1–10 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Boire, P. Menut, M.-H. Morel, C. Sanchez, J. Phys. Chem. B 119(17), 5412–5421 (2015)CrossRefGoogle Scholar
  50. 50.
    J. Arnauts, R. De Cooman, P. Vandeweerdt, R. Koningsveld, H. Berghmans, Thermochim. Acta 238, 1–16 (1994)CrossRefGoogle Scholar
  51. 51.
    T. Yamaoka, T. Tamura, Y. Seto, T. Tada, S. Kunugi, D.A. Tirrell, Biomacromolecules 4(6), 1680–1685 (2003)CrossRefGoogle Scholar
  52. 52.
    C. Boutris, E.G. Chatzi, C. Kiparissides, Polymer (Guildf). 38(10), 2567–2570 (1997)CrossRefGoogle Scholar
  53. 53.
    P.A. Darcy, J.M. Wiencek, J. Cryst. Growth 196(2-4), 243–249 (1999)CrossRefGoogle Scholar
  54. 54.
    G. Dreezen, G. Groeninckx, S. Swier, B. Van Mele, Polymer (Guildf). 42(4), 1449–1459 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication September/2018

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb (L2C), CNRSUniversity of MontpellierMontpellierFrance
  2. 2.UMR IATE, CIRAD, INRA, Université de MontpellierMontpellier SupAgroMontpellierFrance
  3. 3.Ingénierie Procédés Aliments, AgroParisTech, INRAUniversité Paris-SaclayMassyFrance

Personalised recommendations