Rheological Properties of Aqueous Dispersions of Xanthan Gum Containing Different Chloride Salts Are Impacted by both Sizes and Net Electric Charges of the Cations

  • Zoila Rosa Nieto Galván
  • Lucas de Souza Soares
  • Eber Antonio Alves Medeiros
  • Nilda de Fátima Ferreira Soares
  • Afonso Mota Ramos
  • Jane Sélia dos Reis Coimbra
  • Eduardo Basílio de Oliveira
ORIGINAL ARTICLE
  • 37 Downloads

Abstract

Xanthan gum (XG) is one of the most effective thickener agents used worldwide. In foods products, one of the factors affecting its physical properties is the ionic strength of the medium. Though it is well known that XG rheological properties in aqueous media depend on both type and concentration of electrolytes, correlations between such dispersion properties and molecular aspects of dispersed XG chains are still to be more deeply studied. Thus, in the present study, aqueous XG dispersions [200 mg⋅(100 mL)−1] added of Na, K, Mg or Ca chlorides (ionic strength 50 mM or 100 mM) were rheologically characterized, and the corresponding results were explained based on different physicochemical analyses. Comparing to the control (unsalted XG dispersion), KCl and CaCl2 tended to produce a more drastic decrease of apparent viscosities of XG dispersions than NaCl and MgCl2. In dynamic-oscillatory assays, the predominance of elastic character over viscous character was more evident for XG dispersions containing KCl and CaCl2, in particular at frequencies > 0.1 Hz. XG dispersions containing KCl or CaCl2 also presented smaller pH and |ζ-potentials| values, as well as greater densities and average hydrodynamic diameters of dispersed XG chains, when compared to respective counterparts containing NaCl or MgCl2. As the decreasing order of the cations radii is K+ > Ca2+ ≈ Na+ > Mg2+, our results allowed deducing that not only the net electric charges of the cations, but also their sizes, should be considered when analyzing the effect of chloride salts on rheological properties of XG aqueous dispersions, according to the desired for this hydrocolloid (weak thickener, strong thickener or pro-gelling agent).

Keywords

Chloride salts Food biomolecules Ionic radii Ionic strength Rheology Zeta potential 

Abbreviations

aM

Second constant of Mark-Houwink-Sakurada relationship

dp

Average hydrodynamic diameter of dispersed particles (nm)

D

Coefficient of mass diffusivity (m2∙s−1)

DLS

Dynamic light scattering

G’

Storage modulus (Pa)

G”

Loss modulus (Pa)

g(2)(t)

Normalized temporal intensity correlation functions

σp

Peak width (nm)

K

Consistency index (Pa∙sn)

kB

Boltzmann constant (1.3806488∙10−23 m2∙kg∙s-2 ∙K−1)

k

First constant of Mark-Houwink-Sakurada relationship (mL∙g−1)

MAPE

Mean absolute percentage error

Mv

Viscometric molar mass (kDa)

n

Flow behavior index

ni

Refraction index

η

Viscosity (Pa·s).

PDI

Polydispersity index

R2

Coefficient of determination

SSE

Sum of the squared errors

T

Temperature (K)

v

Speed of droplets (m∙s−1)

XG

Xanthan gum

β

Constant depending on the number of coherence areas in DLS analysis

Γ

Decay rate in DLS analysis (s−1)

εo

Permittivity of free space (C2∙N−1∙m−2)

εr

Dieletric constant of the medium

ζ

Zeta potential (mV)

ϴ

Detector position angle of DLS system (set at 173o)

λ

DLS system wavelength (set at 632.8 nm)

μ

Ionic strength (mM)

μe

Electrophoretic mobility (m2∙(V∙s)−1)

τ

Shear stress (Pa)

ω

Frequency (Hz)

\( \overrightarrow{\mathrm{E}} \)

Electric field (V∙m−1)

\( \dot{\gamma} \)

Shear rate (s−1)

[η]H

Huggins intrinsic viscosity (mL∙g−1)

[η]K

Kraemer intrinsic viscosity (mL∙g−1)

\( \overline{\left[\eta \right]} \)

Average intrinsic viscosity (mL∙g−1)

Supplementary material

11483_2018_9524_MOESM1_ESM.docx (351 kb)
ESM 1 (DOCX 351 kb)

References

  1. 1.
    G. Hublik, Polym. Sci. Compr. Ref. 10, 221 (2012)Google Scholar
  2. 2.
    Codex alimentarius. Codex general standard for food additives (GSFA), Codex STAN 192-1995. (Online Database Updated on 2016), http://www.fao.org/fao-who-codexalimentarius/standards/gsfa/pt/. Accessed 10 Oct 2017
  3. 3.
    H. Habibi, K. Khosravi-Darani, Biocatal. Agric. Biotechnol. 10, 130 (2017)Google Scholar
  4. 4.
    K. Kumar, M. Rao, S.S. Han, Carbohydr. Polym. 180, 128 (2018)Google Scholar
  5. 5.
    D.F.S. Petri, J. Appl. Polym. Sci. 132(23), (2015)Google Scholar
  6. 6.
    L. D. Preichardt, P. M. A. Klaic, in “Xanthan Gum, Applications and Research Studies”, ed. By M. Butler (Nova Science Publishers, New York, 2016), p. 175Google Scholar
  7. 7.
    A.M. Lopes, V.L. Lessa, B.M. Silva, M.A.S. Carvalho Filho, E. Schnitzler, L.G. Lacerda, J. Food Nutr. Res. 54, 185 (2015)Google Scholar
  8. 8.
    B. Tinland, M. Rinaudo, Macromolecules 22(4), 1863–1865 (1989)CrossRefGoogle Scholar
  9. 9.
    T. Sato, T. Norisuye, H. Fujita, Polym. J. 16(4), 341–350 (1984)CrossRefGoogle Scholar
  10. 10.
    C.-E. Brunchi, S. Morariu, M. Bercea, Colloids Surf. B: Biointerfaces 122, 512–519 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Saha, S. Bhattacharya, J. Food Sci. Technol. 47(6), 587–597 (2010)CrossRefGoogle Scholar
  12. 12.
    S.K.H. Gulrez, S. Al-Assaf, Y. Fang, G.O. Phillips, A.P. Gunning, Carbohydr. Polym. 90(3), 1235–1243 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Sworn, in “Handbook of Hydrocolloids”, ed. By G. O. Phillips, P. A. Williams (CRC Press, Boca Raton, 2009), p. 1003Google Scholar
  14. 14.
    G. Sworn, in Food Stabilisers, Thickeners and Gelling Agents, ed. By A. Imeson (Wiley-Blackwell Pub, U. K., 2010), p. 354Google Scholar
  15. 15.
    B. Urlacher, O. Noble, in “Thickening and Gelling Agents for Food”, ed. By A. Imeson (Springer, Boston, 1997), p. 258Google Scholar
  16. 16.
    F. García-Ochoa, V.E. Santos, J.A. Casas, E. Gómez, Biotechnol. Adv. 18(7), 549–579 (2000)CrossRefGoogle Scholar
  17. 17.
    L. Liu, Q. Zhao, T. Liu, Z. Long, J. Kong, M. Zhao, Food Hydrocoll. 27(2), 339–346 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Glicksman, Food Hydrocolloids, 1st edn. (CRC Press, Boca Raton, 1982)Google Scholar
  19. 19.
    S. Naji, S.M.A. Razavi, H. Karazhiyan, Food Hydrocoll. 28(1), 75–81 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Xu, G. Xu, T. Liu, Y. Chen, H. Gong, Carbohydr. Polym. 92(1), 516–522 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Xu, M. Dong, H. Gong, M. Sun, Y. Li, Carbohydr. Polym. 121, 147–154 (2015)CrossRefGoogle Scholar
  22. 22.
    M.A. Masuelli, J. Polym, Biopolym. Phys. Chem. 2, 37 (2014)Google Scholar
  23. 23.
    M.R. Kasaai, Carbohydr. Polym. 68(3), 477–488 (2007)CrossRefGoogle Scholar
  24. 24.
    M.L. Amorim, G.M.D. Ferreira, L.S. Soares, W.A.S. Soares, A.M. Ramos, J.S.R. Coimbra, L.H.M. Silva, E.B. Oliveira, Food Biophys. 11(4), 388–399 (2016)CrossRefGoogle Scholar
  25. 25.
    L.S. Soares, J.T. Faria, M.L. Amorim, J.M. Araújo, L.A. Minim, J.S.R. Coimbra, A.V.N.C. Teixeira, E.B. Oliveira, Food Biophys. 12(1), 109–118 (2017)CrossRefGoogle Scholar
  26. 26.
    A. M. Jamieson, R. Simha, in “Polymer Physics from Suspensions to Nanocomposites and Beyond”, ed. By L. A. Utracki, A. M. Jamieson (John Wiley & Sons, Inc., New Yersey, 2010), p. 776Google Scholar
  27. 27.
    S. Wall, Curr. Opin. Colloid Interface Sci. 15(3), 119–124 (2010)CrossRefGoogle Scholar
  28. 28.
    W. Brown, Dynamic Light Scattering: The Method and some Applications, 1st edn. (Clarendon Press, Oxford, 1993)Google Scholar
  29. 29.
    U. Nobbmann, M. Connah, B. Fish, P. Varley, C. Gee, S. Mulot, J. Chen, L. Zhou, Y. Lu, F. Sheng, J. Yi, S.E. Harding, Biotechnol. Genetic Engineering Rev. 24(1), 117–128 (2007)CrossRefGoogle Scholar
  30. 30.
    D. Lewis, C. D, Industrial and Business Forecasting Methods, 1st edn (Butterworths, London, 1982)Google Scholar
  31. 31.
    I. Teraoka, Polymer Solutions: An Introduction to Physical Properties, 1st edn. (John Wiley & Sons, Inc., New York, 2002), p. 331CrossRefGoogle Scholar
  32. 32.
    S. Laiho, R.P.W. Williams, A. Poelman, I. Appelqvist, A. Logan, Food Hydrocoll. 67, 166–177 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Tárrega, M. Martínez, J.F. Vélez-Ruiz, S. Fiszman, Food Hydrocoll. 39, 51–57 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Sharma, E. Kristo, M. Corredig, L. Duizer, Food Hydrocoll. 63, 478–487 (2017)CrossRefGoogle Scholar
  35. 35.
    J.C. Slater, J. Chem. Phys. 41(10), 3199–3204 (1964)CrossRefGoogle Scholar
  36. 36.
    R.D. Shannon, Acta Cryst 32(5), 751–767 (1976)CrossRefGoogle Scholar
  37. 37.
    A. Salis, M. Cristina Pinna, D. Bilanicová, M. Monduzzi, P. Lo Nostro, B.W. Ninham, J. Phys. Chem. B 110(6), 2949–2956 (2006)CrossRefGoogle Scholar
  38. 38.
    R. Huang, B.L.T. Lau, Biochim. Biophys. Acta, Gen. Subj. 1860(5), 945–956 (2016)CrossRefGoogle Scholar
  39. 39.
    A.A. Siddiqui, A. Feroz, P.S.S. Khaki, B. Bano, Int. J. Biol. Macromol. 98, 684–690 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Wu, M. Lai, J. Luo, J. Pan, L-M. Zhang, L. Yang, Int. J. Biol. Macromol. 94, 669 (2017), Pt A, 678Google Scholar
  41. 41.
    Z. Gao, Y. Fang, Y. Cao, H. Liao, K. Nishinari, G.O. Phillips, Food Hydrocoll. 68, 149–156 (2017)CrossRefGoogle Scholar
  42. 42.
    H. Zeng, S. Miao, Y. Zhang, S. Lin, Y. Jian, Y. Tian, B. Zheng, Food Hydrocoll. 52, 126–136 (2016)CrossRefGoogle Scholar
  43. 43.
    D. Pawcenis, J.L. Thomas, T. Łojewski, J.M. Milczarek, J. Łojewska, J. Chromatogr. 1409, 53–59 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zoila Rosa Nieto Galván
    • 1
  • Lucas de Souza Soares
    • 1
  • Eber Antonio Alves Medeiros
    • 1
  • Nilda de Fátima Ferreira Soares
    • 1
  • Afonso Mota Ramos
    • 1
  • Jane Sélia dos Reis Coimbra
    • 1
  • Eduardo Basílio de Oliveira
    • 1
  1. 1.Departamento de Tecnologia de Alimentos (DTA)Universidade Federal de Viçosa (UFV)ViçosaBrazil

Personalised recommendations