Advertisement

Characterization, Release Profile and Antimicrobial Properties of Bioactive Polyvinyl Alcohol-Alyssum homolocarpum Seed Gum- Nisin Composite Film

  • Leila Monjazeb Marvdashti
  • Arash Koocheki
  • Masoud Yavarmanesh
ORIGINAL ARTICLE
  • 10 Downloads

Abstract

A common goal of active packaging is to improve the shelf life, safety, or quality of packaged foods. The integrity of an active package must be remained in order to prevent the growth of microorganisms on the surface of food. Therefore, active polyvinyl alcohol-Alyssum homolocarpum seed gum (PVA-AHSG) composite films with different nisin concentrations (3000, 5000 and 10,000 IU) were prepared and their physico-chemical and antimicrobial properties were determined. Addition of nisin to the composite films increased their water vapor permeability (WVP), elongation at break (EB) and opacity, whereas their total color difference (ΔE), glass transition temperature (Tg), melting temperature (Tm), tensile strength (TS) and young modulus (YM) were decreased. Increasing the nisin concentration remarkably increased the chain mobility, interactions between polymers and water molecules and also the free volume of polymer matrix. The antimicrobial potential of film against L. monocytogene, S. aureus and E. coli as well as the release of nisin into phosphate buffer solution (pH 7.2) were investigated. Films containing nisin had inhibition effect against gram positive pathogens among which L. monocytogenes was the most sensitive bacterium. In liquid media, all films containing nisin prevented the growth of L. monocytogenes and S. aureus, but it was only the film with 10,000 IU nisin content which was able to control 100% of the microbial population during incubation time. Nisin release and diffusion coefficient (D) increased as its concentration increased in the film matrix due to the interaction of nisin with film polymer chains. Therefore, the resultant film had appropriate controlled release property and suitable microbial inhibitory against gram positive bacteria.

Graphical Abstract

Composite bioactive films based on polyvinyl alcohol-Alyssum homolocarpum seed gum blend and Nisin: Physiochemical characterization and antimicrobial properties. Monjazeb et al. (2017).

Keywords

AHSG-PVA film Active film Antimicrobial properties Release Nisin 

Notes

Acknowledgements

The authors gratefully acknowledge the Department of Food Science and Technology, Ferdowsi University of Mashhad for financial support of this work. Funding: This work was supported by Ferdowsi University of Mashhad [33275, 2015].

Compliance with Ethical Standards

Conflict of Interest

It is declared that there is no conflict of interest in publication of this work.

References

  1. 1.
    L. Gram, L. Ravn, M. Rasch, J.B. Bruhn, A.B. Christensen, M. Givskov, Int. J. Food Microbiol. 78(1), 79–97 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Sanjurjo, S. Flores, L. Gerschenson, R. Jagus, Food Res. Int. 39(6), 749–754 (2006)CrossRefGoogle Scholar
  3. 3.
    L. M. Were, B. Bruce, P. M. Davidson and J. Weiss, Journal of Food Protection® 67 (5), 922–927 (2004)Google Scholar
  4. 4.
    A. Gennadios, M.A. Hanna, L.B. Kurth, LWT-Food Science and Technology 30(4), 337–350 (1997)CrossRefGoogle Scholar
  5. 5.
    S.-Y. Sung, L.T. Sin, T.-T. Tee, et al., Trends Food Sci. Technol. 33(2), 110–123 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, J. Debevere, Trends Food Sci. Technol. 10(3), 77–86 (1999)CrossRefGoogle Scholar
  7. 7.
    J. Delves-broughton, Food Australia 57(12), 525–527 (2005)Google Scholar
  8. 8.
    K. Hoffman, I. Han, P. Dawson, J. Food Prot. 64(6), 885–889 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Chacko, (2008)Google Scholar
  10. 10.
    M.A. Hesarinejad, S.M. Razavi, A. Koocheki, Int. J. Biol. Macromol. 81, 418–426 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Koocheki, R. Kadkhodaee, S.A. Mortazavi, F. Shahidi, A.R. Taherian, Food Hydrocoll. 23(8), 2416–2424 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Koocheki, S.A. Mortazavi, F. Shahidi, S. Razavi, R. Kadkhodaee, J.M. Milani, J. Food Process Eng. 33(5), 861–882 (2010)Google Scholar
  13. 13.
    A. Koocheki, S.A. Mortazavi, F. Shahidi, S.M.A. Razavi, A. Taherian, J. Food Eng. 91(3), 490–496 (2009)CrossRefGoogle Scholar
  14. 14.
    M. L. Monjazeb, M. Yavarmanesh and A. Koocheki, (2017)Google Scholar
  15. 15.
    L.M. Marvdashti, A. Koocheki, M. Yavarmanesh, Carbohydr. Polym. 155, 280–293 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Monjazeb Marvdashti, M. Yavarmanesh, A. Koocheki, Iranian food science and technology research. Journal 12(5), 663–677 (2016)Google Scholar
  17. 17.
    C.Y. Basch, R.J. Jagus, S.K. Flores, Food Bioprocess Technol. 6(9), 2419–2428 (2013)CrossRefGoogle Scholar
  18. 18.
    W. Guiga, Y. Swesi, S. Galland, E. Peyrol, P. Degraeve, I. Sebti, Innovative Food Sci. Emerg. Technol. 11(2), 352–360 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Wang, H. Liu, C. Chu, Y. She, S. Jiang, L. Zhai, S. Jiang, X. Li, Food Bioprocess Technol. 8(8), 1657–1667 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Gontard and S. Guilbert, In Food packaging and preservation (Springer, 1994), pp. 159–181Google Scholar
  21. 21.
    S.M. Ojagh, M. Rezaei, S.H. Razavi, S.M.H. Hosseini, Food Chem. 122(1), 161–166 (2010)CrossRefGoogle Scholar
  22. 22.
    D. ASTM, Standard Test Method for Tensile Properties of Thin Plastic Sheeting (2002)Google Scholar
  23. 23.
    A.C. Ripoche, E. Chollet, E. Peyrol, I. Sebti, Innovative Food Sci. Emerg. Technol. 7(1), 107–111 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Crank, N. Y. 19752, 1–21 (1975)Google Scholar
  25. 25.
    ASTM, Standard Test M Ethod for Determ Ining the Antim Icrobial Activity ofIm M Obilized Antim Icrobial AgentsU Nder Dynam Ic Contact Conditions (2001)Google Scholar
  26. 26.
    S. Ko, M. Janes, N. Hettiarachchy, M. Johnson, J. Food Sci. 66(7), 1006–1011 (2001)CrossRefGoogle Scholar
  27. 27.
    I. Sebti, E. Chollet, P. Degraeve, C. Noel, E. Peyrol, J. Agric. Food Chem. 55(3), 693–699 (2007)CrossRefGoogle Scholar
  28. 28.
    D. Dehnad, Z. Emam-Djomeh, H. Mirzaei, S.-M. Jafari, S. Dadashi, Carbohydr. Polym. 105, 222–228 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Flores, L. Gerschenson, R. Jagus, K. Sanjurjo, Focus in food engineering. Series Food Science and Technology, 69–99 (2010)Google Scholar
  30. 30.
    M.M. Murillo-Martínez, S.R. Tello-Solís, M.A. García-Sánchez, E. Ponce-Alquicira, J. Food Sci. 78(4), M560–M566 (2013)CrossRefGoogle Scholar
  31. 31.
    X. Xu, B. Li, J. Kennedy, B. Xie, M. Huang, Carbohydr. Polym. 70(2), 192–197 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Bernela, P. Kaur, M. Chopra, R. Thakur, LWT-Food Science and Technology 59(2), 1093–1099 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Ibarguren, P.M. Naranjo, C. Stötzel, M.C. Audisio, E.L. Sham, E.M. Farfán Torres, F.A. Müller, Appl. Clay Sci. 90, 88–95 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Kong, S. Yu, Acta Biochim. Biophys. Sin. 39(8), 549–559 (2007)CrossRefGoogle Scholar
  35. 35.
    M. Zohri, M.S. Alavidjeh, I. Haririan, M.S. Ardestani, S.E.S. Ebrahimi, H.T. Sani, S.K. Sadjadi, Probiotics and Antimicrobial proteins 2(4), 258–266 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Khan, S.P. Salmieri, C. Fraschini, J. Bouchard, B. Riedl, M. Lacroix, ACS Appl. Mater. Interfaces 6(17), 15232–15242 (2014)CrossRefGoogle Scholar
  37. 37.
    I. Sebti, J. Delves-Broughton, V. Coma, J. Agric. Food Chem. 51(22), 6468–6474 (2003)CrossRefGoogle Scholar
  38. 38.
    L.E. Abugoch, C. Tapia, M.C. Villamán, M. Yazdani-Pedram, M. Díaz-Dosque, Food Hydrocoll. 25(5), 879–886 (2011)CrossRefGoogle Scholar
  39. 39.
    A.L. Storia, D. Ercolini, F. Marinello, G. Mauriello, J. Food Sci. 73(4), T48–T54 (2008)CrossRefGoogle Scholar
  40. 40.
    S.M.M. Meira, G. Zehetmeyer, A.I. Jardim, J.M. Scheibel, R.V.B. de Oliveira, A. Brandelli, Food Bioprocess Technol. 7(11), 3349–3357 (2014)CrossRefGoogle Scholar
  41. 41.
    M. Pereda, A. Ponce, N. Marcovich, R. Ruseckaite, J. Martucci, Food Hydrocoll. 25(5), 1372–1381 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Rao, S. Kanatt, S. Chawla, A. Sharma, Carbohydr. Polym. 82(4), 1243–1247 (2010)CrossRefGoogle Scholar
  43. 43.
    Q. Sun, C. Sun, L. Xiong, Carbohydr. Polym. 98(1), 630–637 (2013)CrossRefGoogle Scholar
  44. 44.
    D. Muscat, R. Adhikari, S. McKnight, Q. Guo, B. Adhikari, J. Food Eng. 119(2), 205–219 (2013)CrossRefGoogle Scholar
  45. 45.
    C.-H. Tang, Y. Jiang, Food Res. Int. 40(4), 504–509 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Teerakarn, D. Hirt, J. Acton, J. Rieck, P. Dawson, J. Food Sci. 67(8), 3019–3025 (2002)CrossRefGoogle Scholar
  47. 47.
    C.P.O. Resa, R.J. Jagus, L.N. Gerschenson, Mater. Sci. Eng. C 40, 281–287 (2014)CrossRefGoogle Scholar
  48. 48.
    E. Kristo, K.P. Koutsoumanis, C.G. Biliaderis, Food Hydrocoll. 22(3), 373–386 (2008)CrossRefGoogle Scholar
  49. 49.
    G. Freddi, M. Romano, M. Massafra, M. Tsukada, J. Appl. Polym. Sci. 56(12), 1537–1545 (1995)CrossRefGoogle Scholar
  50. 50.
    S. Park, C. Rhee, D. Bae, N. Hettiarachchy, J. Agric. Food Chem. 49(5), 2308–2312 (2001)CrossRefGoogle Scholar
  51. 51.
    J. Olivato, M. Grossmann, A. Bilck, F. Yamashita, Carbohydr. Polym. 90(1), 159–164 (2012)CrossRefGoogle Scholar
  52. 52.
    N. Cao, X. Yang, Y. Fu, Food Hydrocoll. 23(3), 729–735 (2009)CrossRefGoogle Scholar
  53. 53.
    U. Siripatrawan, W. Vitchayakitti, Food Hydrocoll. 61, 695–702 (2016)CrossRefGoogle Scholar
  54. 54.
    D. Dehnad, H. Mirzaei, Z. Emam-Djomeh, S.-M. Jafari, S. Dadashi, Carbohydr. Polym. 109, 148–154 (2014)CrossRefGoogle Scholar
  55. 55.
    S.G. Shiroodi, S. Nesaei, M. Ovissipour, H.M. Al-Qadiri, B. Rasco, S. Sablani, Food Bioprocess Technol. 9(6), 958–969 (2016)CrossRefGoogle Scholar
  56. 56.
    L. Bastarrachea, S. Dhawan, S.S. Sablani, J. Powers, J. Food Eng. 100(1), 93–101 (2010)CrossRefGoogle Scholar
  57. 57.
    Y.M. Kim, D.S. An, H.J. Park, J.M. Park, D.S. Lee, Packag. Technol. Sci. 15(5), 247–254 (2002)CrossRefGoogle Scholar
  58. 58.
    L. Bastarrachea, S. Dhawan, S.S. Sablani, J.H. Mah, D.H. Kang, J. Zhang, J. Tang, J. Food Sci. 75(4), E215–E224 (2010)CrossRefGoogle Scholar
  59. 59.
    M. Imran, A. Klouj, A.-M. Revol-Junelles, S. Desobry, J. Food Eng. 143, 178–185 (2014)CrossRefGoogle Scholar
  60. 60.
    I. Sebti, D. Blanc, A. Carnet-Ripoche, R. Saurel, V. Coma, J. Food Eng. 63(2), 185–190 (2004)CrossRefGoogle Scholar
  61. 61.
    B. Li, J. Kennedy, J. Peng, X. Yie, B. Xie, Carbohydr. Polym. 65(4), 488–494 (2006)CrossRefGoogle Scholar
  62. 62.
    Y. Pranoto, S. Rakshit, V. Salokhe, LWT-Food Science and Technology 38(8), 859–865 (2005)CrossRefGoogle Scholar
  63. 63.
    M. Imran, S. El-Fahmy, A.-M. Revol-Junelles, S. Desobry, Carbohydr. Polym. 81(2), 219–225 (2010)CrossRefGoogle Scholar
  64. 64.
    B. Li, J. Peng, X. Yie, B. Xie, J. Food Sci. 71(3), C174–C178 (2006)CrossRefGoogle Scholar
  65. 65.
    L. Cao-Hoang, L. Grégoire, A. Chaine, Y. Waché, Food Control 21(9), 1227–1233 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyFerdowsi University of MashhadMashhadIran

Personalised recommendations