Advertisement

Food Biophysics

, Volume 12, Issue 1, pp 88–96 | Cite as

Effects of Temperature, Time and Composition on Food Oil Surface Tension

  • Tong Xu
  • Veronica Rodriguez-Martinez
  • Shreya N. Sahasrabudhe
  • Brian E. Farkas
  • Stephanie R. DunganEmail author
ORIGINAL ARTICLE

Abstract

Equilibrium and time-dependent surface tension properties at the lipid-vapor interface were investigated, due to their importance in many food applications. Common cooking oils and triglycerides, with or without added oil-soluble amphiphiles, were studied as a function of time and temperature. Surface tension was found to decrease linearly as temperature was increased, and this linear dependence was analyzed to yield thermodynamic information on the surface excess energy and entropy. The different types of cooking oils were nearly indistinguishable with regard to their surface entropy and energy, but an effect of acyl chain length was observed from data for different purified triglyceride oils. These results were consistent with separate results on pure fatty acids of different chain lengths and degree of unsaturation. Lipid amphiphiles, natively present or deliberately added at low concentration to oil, did not cause a change in either dynamic or equilibrium surface tension of corn or olive oil. We conclude that such amphiphilic molecules, despite their presence within the food oil, lack significant surface activity at their native concentration when presented with the surface between oil and air. A decrease in tension in corn oil was seen when mixed in solution with the short-chain caprylic acid (octanoate), but the decrease was notable (>4%) only when this short-chain fatty acid was added at high concentration (≥ 1 M). Added sorbitan monooleate (Span 80) or dioctyl sulfosuccinate sodium salt (AOT) surfactants, on the other hand, decreased equilibrium surface tension by up to 12% and 18%, respectively, at low concentrations (<0.125 M).

Keywords

Surface tension Food oils Surface excess entropy and energy Lipid-soluble surfactants Free fatty acids Amphiphilicity 

Notes

Acknowledgements

This work was supported by Agriculture and Food Research Initiative Competitive Grant no. 2014-67017-21831 from the USDA National Institute of Food and Agriculture. Support from the NSF Center for Advanced Processing and Packaging Studies is also acknowledged.

References

  1. 1.
    J.L. Hjorth, R.L. Miller, J.M. Woodley, S. Kiil, Eur. J. Lipid Sci. Technol. 117, 1066 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Gertz, Eur. J. Lipid Sci. Technol. 116, 669 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Mellema, J. Benjamins, Colloid Surf. A 237, 113 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Galus, J. Kadzińska, Food Hydrocoll. 52, 78–86 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Dana, I.S. Saguy, Adv. Colloid Interf. 128, 267 (2006)CrossRefGoogle Scholar
  6. 6.
    L.J. Hubbard, B.E. Farkas, J. Food Process. Preserv. 24, 143 (2000)CrossRefGoogle Scholar
  7. 7.
    R.G. Moreira, M.A. Barrufet, J. Food Eng. 35, 1 (1998)CrossRefGoogle Scholar
  8. 8.
    J.M. Vauvre, A. Patsioura, V. Olivier, R. Kesteloot, AICHE J. 61, 2329–2353 (2015)CrossRefGoogle Scholar
  9. 9.
    C.E. Ejim, B.A. Fleck, A. Amirfazli, Fuel 86, 1534 (2007)CrossRefGoogle Scholar
  10. 10.
    E.P. Kalogianni, T.D. Karapantsios, R. Miller, J. Food Eng. 105, 169 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Dopierala, A. Javadi, J. Krägel, K.H. Schano, E.P. Kalogianni, M.E. Leser, R. Miller, Colloid Surf. A 382, 261 (2011)CrossRefGoogle Scholar
  12. 12.
    C.C. Ho, M.C. Chow, J. Am. Oil Chem. Soc. 77, 191 (2000)CrossRefGoogle Scholar
  13. 13.
    R.R. Benerito, W.S. Singleton, R.O. Feuge, J. Phys. Chem. 58, 831 (1954)CrossRefGoogle Scholar
  14. 14.
    L.D. Chumpitaz, L.F. Coutinho, A.J. Meirelles, J. Am. Oil Chem. Soc. 76, 379 (1999)CrossRefGoogle Scholar
  15. 15.
    D.G. Dervichian, Prog. Chem. Fats Other Lipids 2, 193 (1954)CrossRefGoogle Scholar
  16. 16.
    K.W. Hunten, O. Maass, J. Am. Chem. Soc. 51, 153 (1929)CrossRefGoogle Scholar
  17. 17.
    W. Chaiyasit, R.J. Elias, D.J. McClements, E.A. Decker, Crit. Rev. Food Sci. 47, 299 (2007)CrossRefGoogle Scholar
  18. 18.
    R.P. D’alonzo, W.J. Kozarek, R.L. Wade, J. Am. Oil Chem. Soc. 59, 292 (1982)CrossRefGoogle Scholar
  19. 19.
    C.P. Tan, Y.B.C. Man, J. Selamat, M.S.A. Yusoff, Food Chem. 76, 385 (2002)CrossRefGoogle Scholar
  20. 20.
    Food Additives Permitted for Direct Addition to Food for Human Consumption, CFR – Code of Federal Regulations Title 21, Chapter 1, Subchapter B, Part 172 (U.S. National Archives and Records Administration Web 2015), http://www.accessdata.fda.gov/scripts/cdrh/dfdocs/dcfcfr/CFR. Accessed 10 Sept 2016
  21. 21.
    T.K. De, A. Maitra, Adv. Colloid Interf. 59, 95 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Korhonen, J. Hirvonen, L. Peltonen, O. Antikainen, L. Yrjänäinen, J. Yliruusi, Int. J. Pharm. 269, 227 (2004)CrossRefGoogle Scholar
  23. 23.
    N. Pilpel, M.E. Rabbani, J. Colloid Interface Sci. 122, 266 (1988)CrossRefGoogle Scholar
  24. 24.
    F.O. Opawale, D.J. Burgess, J. Colloid Interface Sci. 197, 142 (1998)CrossRefGoogle Scholar
  25. 25.
    L.J. Peltonen, J. Yliruusi, J. Colloid Interface Sci. 227, 1 (2000)CrossRefGoogle Scholar
  26. 26.
    AOCS, in Official methods and recommended practices of the American oil chemists society, fifth edn., ed by D. Firestone. Method Ca 5a-40: free fatty acids (American Oil Chemists’ Society, Champaign, 1998)Google Scholar
  27. 27.
    M.G.D. Silva, R.P. Singh, J. Food Process. Preserv. 19, 259 (1995)CrossRefGoogle Scholar
  28. 28.
    J. Lyklema, Colloid Surf. A 156, 413 (1999)CrossRefGoogle Scholar
  29. 29.
    J.J. Jasper, E.R. Keer, F. Gregorich, J. Am. Chem. Soc. 75, 5252 (1953)CrossRefGoogle Scholar
  30. 30.
    H. Brockerhoff, M. Yurkowski, J. Lipid Res. 7, 62 (1966)Google Scholar
  31. 31.
    W.W. Christie, B. Nikolova-Damyanova, P. Laakso, B. Herslof, J. Am. Oil Chem. Soc. 68, 695 (1991)CrossRefGoogle Scholar
  32. 32.
    J.J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972)CrossRefGoogle Scholar
  33. 33.
    J. Lyklema, Colloid Surf. A 186, 11 (2001)CrossRefGoogle Scholar
  34. 34.
    J.W. Brady, Introductory food chemistry (Comstock Publishing Associates, Ithaca, 2013), p. 427Google Scholar
  35. 35.
    V.B. Fainerman, R. Miller, Adv. Colloid Interf. 108, 287 (2004)CrossRefGoogle Scholar
  36. 36.
    Commericial Item Description: Salad Oils, Vegetable, United States Deparment of Agriculture, https://www.ams.usda.gov/sites/default/files/media/CIDSaladOilsVegetable.pdf. Accessed 8 Dec 2016
  37. 37.
    Olive Oil and Olive-Pomace Oil Grades and Standards, United States Deparment of Agriculture, https://www.ams.usda.gov/grades-standards/olive-oil-and-olive-pomace-oil-grades-and-standards. Acessed 25 Nov 2016
  38. 38.
    J. Bahtz, D. Knorr, C. Tedeschi, M.E. Leser, B. Valles-Pamies, R. Miller, Colloid Surf. B 74, 492 (2009)CrossRefGoogle Scholar
  39. 39.
    R. Aveyard, T. Faraday Soc. 63, 2778 (1967)CrossRefGoogle Scholar
  40. 40.
    H. Noureddini, B. Teoh, L.D. Clements, J. Am. Oil Chem. Soc. 69, 1184 (1992)CrossRefGoogle Scholar
  41. 41.
    D.A. Fahey, D.M. Small, Biochemistry 25, 4468 (1986)CrossRefGoogle Scholar
  42. 42.
    N. Funasaki, S. Hada, K. Suzuki, Chem. Pharm. Bull. 24, 731 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tong Xu
    • 1
  • Veronica Rodriguez-Martinez
    • 2
  • Shreya N. Sahasrabudhe
    • 2
  • Brian E. Farkas
    • 2
  • Stephanie R. Dungan
    • 1
    • 3
    Email author
  1. 1.Department of Food Science and TechnologyUniversity of California, DavisDavisUSA
  2. 2.Department of Food SciencePurdue UniversityWest LafayetteUSA
  3. 3.Department of Chemical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations