Food Biophysics

, Volume 11, Issue 2, pp 142–153 | Cite as

Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions

  • Liqiang Zou
  • Bingjing Zheng
  • Ruojie Zhang
  • Zipei Zhang
  • Wei LiuEmail author
  • Chengmei Liu
  • Hang Xiao
  • David Julian McClementsEmail author


Powdered curcumin was either dissolved in the lipid phase of a nanoemulsion delivery system or it was directly mixed with an excipient nanoemulsion. The influence of thermal treatment (30 or 90 °C) and protein addition (caseinate) on the bioaccessibility and transformation of curcumin was then investigated using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. Curcumin solubility was high in nanoemulsion delivery systems exposed to both thermal treatments because it was already present in the lipid phase. Conversely, curcumin solubility of a powder mixed with an excipient nanoemulsion was appreciably lower when exposed to 30 °C than 90 °C. This effect was attributed to the greater transfer of curcumin to the lipid phase of the excipient nanoemulsions at elevated temperatures. For the heated samples, the bioaccessibility and transformation of curcumin was not greatly affected by original curcumin location or protein addition. However, curcumin bioaccessibility was appreciably higher in the presence of nanoemulsion lipid droplets than in their absence, which was attributed to an increase in the solubilization capacity of the mixed micelle phase. This study provides some useful information for improving the design of functional foods to improve the oral bioavailability profile of lipophilic nutraceuticals.


Curcumin Nanoemulsion Bioaccessibility Nutraceutical Delivery system 



This material was partly based upon work supported by the USDA, NRI Grants (2011-03539, 2013-03795, 2011-67021, and 2014-67021). We also thank the National Aero and Space Administration (NASA) for partial funding of this research (NNX14AP32G). This project was also partly supported by the National Natural Science Foundation of China (NSFC31428017). This project was also partly funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant numbers 330-130-1435-DSR, 299-130-1435-DSR, 87-130-35-HiCi. The authors, therefore, acknowledge with thanks DSR technical and financial support.


  1. 1.
    M. Heger, R. F. van Golen, M. Broekgaarden, M. C. Michel, Pharmacol Rev 66(1), 222 (2014)CrossRefGoogle Scholar
  2. 2.
    H. K. Syed, K. B. Liew, G. O. K. Loh and K. K. Peh, Food Chem 170 (0), 321 (2015).Google Scholar
  3. 3.
    R. Wilken, M. S. Veena, M. B. Wang and E. S. Srivatsan, Molecular cancer 10, 1–19 (2011)Google Scholar
  4. 4.
    P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Mol Pharm 4(6), 807 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Prasad, S. C. Gupta, A. K. Tyagi, B. B. Aggarwal, Biotechnol Adv 32(6), 1053 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Jitoe-Masuda, A. Fujimoto, T. Masuda, Curr Pharm Des 19(11), 2084 (2013)Google Scholar
  7. 7.
    S. Fu, Z. Shen, S. Ajlouni, K. Ng, L. Sanguansri and M. A. Augustin, Food Chem 149 (0), 47–53 (2014).Google Scholar
  8. 8.
    X. Chen, L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng, C.-M. Liu, Molecules 20(8), 14293 (2015)CrossRefGoogle Scholar
  9. 9.
    F.-P. Chen, B.-S. Li, C.-H. Tang, J Agric Food Chem 63(13), 3559 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.-H. Wang, J.-M. Wang, X.-Q. Yang, J. Guo, Y. Lin, Food & Function 6(8), 2636 (2015)CrossRefGoogle Scholar
  11. 11.
    B. R. Shah, Y. Li, W. Jin, et al., Food Hydrocoll 52, 369 (2016)CrossRefGoogle Scholar
  12. 12.
    N. P. Aditya, S. Aditya, H.-J. Yang, et al., J Funct Foods 15, 35 (2015)CrossRefGoogle Scholar
  13. 13.
    T. P. Sari, B. Mann, R. Kumar, et al., Food Hydrocoll 43 (0), 540 (2015).Google Scholar
  14. 14.
    K. Ahmed, Y. Li, D. J. McClements, H. Xiao, Food Chem 132(2), 799 (2012)CrossRefGoogle Scholar
  15. 15.
    A. R. Patel, K. P. Velikov, LWT Food Sci Technol 44(9), 1958 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Xiao, S. Nian, Q. Huang, Food Hydrocoll 51, 166 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, D. J. McClements, Food Chem 182, 275 (2015)CrossRefGoogle Scholar
  18. 18.
    D. J. McClements, H. Xiao, Food & Function 3(3), 202 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Zou, W. Liu, C. Liu, H. Xiao, D. J. McClements, J Agric Food Chem 63, 2052 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Zou, B. Zheng, W. Liu, C. Liu, H. Xiao, D. J. McClements, J Funct Foods 15, 72 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Zou, W. Liu, C. Liu, H. Xiao, D. J. McClements, Food & Function 6(8), 2475 (2015)CrossRefGoogle Scholar
  22. 22.
    D. J. McClements, H. Xiao, Food & Function 5(7), 1320 (2014)CrossRefGoogle Scholar
  23. 23.
    D. J. McClements, F. Li, H. Xiao, Annu Rev Food Sci T 6(6), 299 (2015)CrossRefGoogle Scholar
  24. 24.
    J. W. Brady, Introductory Food Chemistry (Cornell University Press, Ithaca, N.Y, 2013)Google Scholar
  25. 25.
    S. Damodaran, K. L. Parkin, O. R. Fennema, Fennema’s Food Chemistry, Fourth edn. (CRC Press, Boca Raton, FL., 2007)Google Scholar
  26. 26.
    F.-P. Chen, B.-S. Li, C.-H. Tang, Food Res Int 75, 157 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Li, J. Cui, M. O. Ngadi, Y. Ma, Food Chem 180, 48 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Pan, Q. Zhong, S. J. Baek, J Agric Food Chem 61(25), 6036 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Qian, E. A. Decker, H. Xiao, D. J. McClements, Food Chem 135(3), 1440 (2012)CrossRefGoogle Scholar
  30. 30.
    L. Salvia-Trujillo, C. Qian, O. Martin-Belloso, D. J. McClements, Food Chem 139(1–4), 878 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Zhang, Z. Zhang, H. Zhang, E. A. Decker and D. J. McClements, Food Hydrocoll (0).Google Scholar
  32. 32.
    Y. Mao, D. J. McClements, Food & Function 3(10), 1025 (2012)CrossRefGoogle Scholar
  33. 33.
    D. J. McClements, Food emulsions: principles, practice and techniques, third, Edition edn. (CRC Press, Boca Raton, FL, 2015)CrossRefGoogle Scholar
  34. 34.
    S. J. Radford, E. Dickinson, Colloids Surf A Physicochem Eng Asp 238(1–3), 71 (2004)CrossRefGoogle Scholar
  35. 35.
    A. H. Saberi, Y. Fang, D. J. McClements, J Colloid Interface Sci 391, 95 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Israelachvili, Intermolecular and surface forces, third edition, third, Edition edn. (Academic Press, London, UK, 2011)Google Scholar
  37. 37.
    M. H. Vingerhoeds, T. B. J. Blijdenstein, F. D. Zoet, G. A. van Aken, Food Hydrocoll 19(5), 915 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Li, A. Ye, S. J. Lee, H. Singh, Food & Function 3(3), 320 (2012)CrossRefGoogle Scholar
  39. 39.
    R. Devraj, H. D. Williams, D. B. Warren, A. Mullertz, C. J. H. Porter, C. W. Pouton, Int J Pharm 441(1–2), 323 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Liqiang Zou
    • 1
  • Bingjing Zheng
    • 2
  • Ruojie Zhang
    • 2
  • Zipei Zhang
    • 2
  • Wei Liu
    • 1
    Email author
  • Chengmei Liu
    • 1
  • Hang Xiao
    • 2
  • David Julian McClements
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyNanchang University, NanchangNanchangChina
  2. 2.Department of Food ScienceUniversity of MassachusettsAmherstUSA
  3. 3.Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations