Skip to main content
Log in

An Insight into the Role of Glycerol in Chitosan Films

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work was focused on assessing the influence of the glycerol in chitosan matrices, analyzing the changes produced in the molecular mobility, mechanical, thermal, barrier and structural properties. The addition of glycerol in the matrix decreased the stress values, increasing the elasticity and water vapor permeability of the films, with a marked decrease in glass transition temperature; Detailed analyses of Fourier Transform IR Spectroscopy spectra supported the observed changes, especially in the spectral windows 1700–1500 cm−1 revealing the modifications at molecular level caused by hydrogen bond interactions between chitosan and water in the presence of glycerol. Positron annihilation spectroscopic (PALS) measurements allowed determining the free volume assuming spherical holes as well as monitoring the structural changes in chitosan films caused by the addition of both, glycerol and water molecules. It was possible to infer that for unplasticized matrices, a sustained increase of the radius between 0.06 and 0.2 of Xwater was observed, followed by a plateau up to 0.35. In the other case, with the addition of glycerol, there were two plateaus, the first between 0.25 and 0.37 of Xwater, and the second from 0.41 to 0.47. For higher glycerol concentrations, the plasticizer would be mainly bounded to the chitosan pack more efficiently and the water present in the system would be predominantly free in the matrix causing its swelling. Findings on molecular mobility contributed to the understanding of the role of water and glycerol in the structural arrangement and its influence on film properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.N.V. Ravi Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017–6084 (2004)

    Article  Google Scholar 

  2. P. Bergo, I.C.F. Moraes, P.J.A. Sobral, Effects of different moisture contents on physical properties of PVA-gelatin films. Food Biophys. 7, 354–361 (2012)

    Article  Google Scholar 

  3. A. Lazaridou, C.G. Biliaderis, Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydr. Polym. 48(2), 179–190 (2002)

    Article  CAS  Google Scholar 

  4. J.F. Fundo, R. Fernandes, P.M. Almeida, A. Carvalho, G. Feio, C.L.M. Silva, M.A.C. Quintas, Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chem. 144, 2–8 (2014)

    Article  CAS  Google Scholar 

  5. R. Sothornvit, J.M. Krochta, Plasticizers in edible films and coatings innovations”, in Innovations in Food Packaging, ed. by J.H. Han (Elsevier, Amsterdam, 2005), pp. 403–428

    Chapter  Google Scholar 

  6. M.A. Cerqueira, B.W.S. Souza, J.A. Teixeira, A.A. Vicente, Effect of glycerol and corn oil on physicochemical properties of polysaccharide films e a comparative study. Food Hydrocolloid. 27, 175–184 (2012)

    Article  CAS  Google Scholar 

  7. M. Roussenova, J. Enrione, P. Diaz-Calderon, A.J. Taylor, J. Ubbink, M.A. Alam, A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents. New J. Phys. 14(3), 1–18 (2012)

    Article  Google Scholar 

  8. S. Rivero, M.A. García, A. Pinotti, Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydr. Polym. 82, 270–276 (2010)

    Article  CAS  Google Scholar 

  9. N. Romano, M.J. Tavera-Quiroz, N. Bertola, P. Mobili, A. Pinotti, A. Gómez-Zavaglia, Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res. Int. 64, 560–566 (2014)

    Article  CAS  Google Scholar 

  10. AOAC (Association of Official Analytical Chemists), Official Methods of Analysis, 16th edn. (AOAC International, Gaithersburg, 1998)

    Google Scholar 

  11. S.M. Demarchi, N.A. Quintero-Ruiz, A. De Michelis, S.A. Giner, Sorption characteristics of rosehip, apple and tomato pulp formulations as determined by gravimetric and hygrometric methods. LWT Food Sci. Technol. 52, 21–26 (2013)

    Article  CAS  Google Scholar 

  12. H. Bizot, Using the GAB model to construct sorption isotherms, in Physical Properties of Foods, ed. by R. Jowitt, F. Escher, B. Hallstrom, H.F.T. Meffert, W.E.L. Spiess, G. Vos (Applied Science Publishers, London, 1983), pp. 43–54

    Google Scholar 

  13. S.E. Smith, The absorption of water by high polymers. J. Am. Chem. Soc. 69, 646–651 (1947)

  14. C.R. Oswin, Kinetics of package life. III. The isotherm. J. Soc. Chem. Ind. 65, 419–421 (1946)

  15. J. Chirife, H.A. Iglesias, Equations for fitting water sorption isotherms of food: part 1. a review. J. Food Technol. 13, 159–174 (1978)

    Article  Google Scholar 

  16. ASTM, Standard Test Methods for Water Vapor Transmission of Material, E96–95, Annual Book of ASTM (American Society for Testing and Materials, Philadelphia, 1995)

    Google Scholar 

  17. S. Rivero, L. Giannuzzi, M.A. García, A. Pinotti, Controlled delivery of propionic acid from chitosan films for pastry dough conservation. J. Food Eng. 116, 524–531 (2013)

    Article  CAS  Google Scholar 

  18. B. Cuq, N. Gontard, S. Guilbert, Thermal properties of fish myofibrillar protein-based films as affected by moisture content. Polymer 38(10), 2399–2405 (1997)

    Article  CAS  Google Scholar 

  19. P. Kirkegaard, M. Eldrup, A versatile program for analyzing positron lifetime stectra. Comput. Phys. Commun. 3, 240–255 (1972)

    Article  Google Scholar 

  20. P. Kirkegaard, M. Eldrup, Positronfit extended: a new version of a program for analyzing positron lifetime spectra. Comput. Phys. Commun. 7, 401–409 (1974)

    Article  CAS  Google Scholar 

  21. M. Lacroix, K. Cooksey, Edible films and coating from animal-origin proteins, In: Elsevier Ltd (Ed.). Innovations in Food Packaging, pp. 301–312, Chapter 18, (2005).

  22. O. López, M.A. García, N. Zaritzky, Film forming capacity of chemically modified corn starches. Carbohydr. Polym. 73, 573–581 (2008)

    Article  Google Scholar 

  23. F. Versino, M.A. García, Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind. Crops Prod. 58, 305–314 (2014)

    Article  CAS  Google Scholar 

  24. J. Piermaria, A. Bosch, A. Pinotti, O. Yantorno, M.A. Garcia, A.G. Abraham, Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloid. 25(5), 1261–1269 (2011)

    Article  CAS  Google Scholar 

  25. I. Quijada-Garrido, V. Iglesias-González, J.M. Mazón-Arechederra, J.M. Barrales-Rienda, The role played by the interactions of small molecules with chitosan and their transition temperatures. glass-forming liquids: 1,2,3-Propantriol (glycerol). Carbohydr. Polym. 68, 173–186 (2007)

    Article  CAS  Google Scholar 

  26. P.G. León, S. Chillo, A. Conte, L.N. Gerschenson, M.A. Del Nobile, A.M. Rojas, Rheological characterization of deacylated/acylated gellan films carrying L-(þ)-ascorbic acid. Food Hydrocolloid. 23, 1660–1669 (2009)

    Article  Google Scholar 

  27. P.P. Dhawade, R.N. Jagtap, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv. Applied Sci. Res. 3(3), 1372–1382 (2012)

    CAS  Google Scholar 

  28. C.G.T. Neto, J.A. Giacometti, A.E. Job, F.C. Ferreira, J.L.C. Fonseca, M.R. Pereira, Thermal Analysis of Chitosan Based Networks. Carbohydr. Polym. 62, 97–103 (2005)

    Article  CAS  Google Scholar 

  29. M. Mucha, A. Pawlak, Thermal analysis of chitosan and its blends. Thermochim. Acta 427, 69–76 (2005)

    Article  CAS  Google Scholar 

  30. A. Domjan, J. Bajdik, K. Pintye-Hódi, Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules 42(13), 4667–4673 (2009)

    Article  CAS  Google Scholar 

  31. O.R. Fennema, Food Chemistry, 3rd edn. (Marcel and Dekker Inc., New York, 1996)

    Google Scholar 

  32. L. Slade, H. Levine, Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30, 115–360 (1991)

    Article  CAS  Google Scholar 

  33. I. Yakimets, S.S. Paes, N. Wellner, A.C. Smith, R.H. Wilson, J.R. Mitchell, Effect of water content on the structural reorganization and elastic properties of biopolymer films: a comparative study. Biomacromolecules 8, 1710–1722 (2007)

    Article  CAS  Google Scholar 

  34. M. Laporta, M. Pegoraro, L. Zanderighi, Perfluorosulfonated membrane (Nafion) FT-IR study of the state of water with increasing humidity. Phys. Chem. Chem. Phys. 1, 4619–4628 (1999)

    Article  CAS  Google Scholar 

  35. H. Wilhelm, M. Sierakowski, G. Souza, F. Wypych, Starch films reinforced with mineral clay. Carbohydr. Polym. 52, 101–110 (2003)

    Article  CAS  Google Scholar 

  36. M. Roussenova, M.A. Alam, PALS: A unique probe for the molecular organisation of biopolymer matrices. 16th International Conference on Positron Annihilation (ICPA-16). J. Phys. Conf. Ser. 443, 012–044 (2013)

    Article  Google Scholar 

  37. M. Roussenova, M. Murith, A. Alam, J. Ubbink, Plasticization, antiplasticization, and molecular packing in amorphous carbohydrate-glycerol matrices. Biomacromolecules 11, 3237–3247 (2010)

    Article  CAS  Google Scholar 

  38. K. Pintye-Hódi, G.I. Regdon Jr., K.K. Eros Süvegh, T. Marek, I. Kéry, R. Zelkó, Metolose–PEG interaction as seen by positron annihilation spectroscopy. Int. J. Pharm. 313, 66–71 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Argentinean Agency for the Scientific and Technological Promotion (ANPCyT) (Project PICT/2012/0415) and the Argentinean National Research Council (CONICET) (PIP 2013–0109). Authors acknowledge Ing.Javier Lecot and Daniel Russo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rivero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivero, S., Damonte, L., García, M.A. et al. An Insight into the Role of Glycerol in Chitosan Films. Food Biophysics 11, 117–127 (2016). https://doi.org/10.1007/s11483-015-9421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9421-4

Keywords

Navigation