Advertisement

Food Biophysics

, Volume 11, Issue 1, pp 81–90 | Cite as

Characteristics of Relationships Between Structure of Gluten Proteins and Dough Rheology – Influence of Dietary Fibres Studied by FT-Raman Spectroscopy

  • Agnieszka NawrockaEmail author
  • Antoni Miś
  • Monika Szymańska-Chargot
ORIGINAL ARTICLE

Abstract

The aim of this research was to study which kind of conformational changes in gluten proteins were induced by addition of four dietary fibre (apple-cranberry, cacao, carob and oat) by using FT-Raman spectroscopy and to find relationships between conformational changes and rheological behaviour of bread dough in mixing and extensional tests. Structural studies showed that all fibres induced formation of β-like structures between two protein molecules (pseudo-β-sheets) with the band at 1616 cm−1 in the Raman spectrum. According to Principal Component Analysis, the strongest dependence was between changes in gluten structure and two extensographic parameters (resistance to extension and extensibility). Resistance to extension was positively correlated with content of α-helix and pseudo-β-sheets, while a negative correlation was observed between the parameter and content of β-sheets and β-turns. Gauche-gauche-gauche conformation of disulphide bridges and ability of tyrosine residues to hydrogen bonds creation improved mixing properties as stability of dough.

Keywords

Dietary fibre supplementation Bread dough Raman spectroscopy Amid I band Secondary structure Rheological properties 

Supplementary material

11483_2015_9419_MOESM1_ESM.doc (304 kb)
ESM 1 (DOC 304 kb)

References

  1. 1.
    S. Kaur, M. Das, Food Sci. Biotechnol. 20, 861 (2011)CrossRefGoogle Scholar
  2. 2.
    A.S. Sivam, D. Sun-Waterhouse, S.Y. Quek, C.O. Perera, J. Food Sci. 75, R163 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Wang, C.M. Rosell, C.B. de Barber, Food Chem. 79, 221 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Gomez, F. Ronda, C.A. Blanco, P.A. Caballero, A. Apesteguia, Eur. Food Res. Technol. 216, 51 (2003)Google Scholar
  5. 5.
    D. Peressini, A. Sensidoni, J. Cereal Sci. 49, 190 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Skendi, M. Papageorgiou, C.G. Biliaderis, J. Food Eng. 91, 594 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Miś, J. Food Eng. 102, 369 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Miś, D. Dziki, J. Cereal Sci. 57, 471 (2013)CrossRefGoogle Scholar
  9. 9.
    N.N. Rosa, C. Baron, C. Gaiani, C. Dufour, V. Micard, J. Cereal Sci. 57, 84 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Collar, E. Santos, C.M. Rosell, J. Food Eng. 78, 820 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Wieser, Food Microbiol. 24, 115 (2007)CrossRefGoogle Scholar
  12. 12.
    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.N. Waterhouse, Food Chem. 131, 802 (2012)CrossRefGoogle Scholar
  13. 13.
    B.W. Seabourn, O.K. Chung, P.A. Seib, P.R. Mathewson, J. Agric. Food Chem. 56, 4236 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Mejri, B. Roge, A. BenSouissi, F. Michels, M. Mathlouni, Food Chem. 92, 7 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Rygula, K. Majzner, K.M. Marzec, A. Kaczor, M. Pilarczyk, M. Barańska, J. Raman Spectrosc. 44, 1061 (2013)CrossRefGoogle Scholar
  16. 16.
    E.G. Ferrer, A.V. Gomez, M.C. Anon, M.C. Puppo, Spectrochim. Acta A 79, 278 (2011)CrossRefGoogle Scholar
  17. 17.
    A.V. Gomez, E.G. Ferrer, M.C. Anon, M.C. Puppo, J. Mol. Struct. 1033, 51 (2013)CrossRefGoogle Scholar
  18. 18.
    A.S. Sivam, D. Sun-Waterhouse, C.O. Perera, G.I.N. Waterhouse, Food Res. Int. 2013(50), 574 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Kuktaite, H. Larsson, E. Johansson, J. Cereal Sci. 40, 31 (2004)CrossRefGoogle Scholar
  20. 20.
    E. Pena, A. Bernardo, C. Soler, N. Jouve, Euphytica 143, 169 (2005)CrossRefGoogle Scholar
  21. 21.
    V.L. Singleton, J.A. Rossi Jr., Am. J. Enol. Vitic. 16, 144 (1965)Google Scholar
  22. 22.
    A. Miś, Acta Agrophysica 128, 1 (2005) (in Polish)Google Scholar
  23. 23.
    K. Nakamura, S. Era, Y. Ozaki, M. Sogami, T. Hayashi, M. Murakami, FEBS Lett. 417, 375 (1997)CrossRefGoogle Scholar
  24. 24.
    H. Chen, G.L. Rubenthaler, E.G. Schanus, J. Food Sci. 53, 304 (1988)CrossRefGoogle Scholar
  25. 25.
    C.M. Rosell, E. Santos, C. Collar, Eur. Food Res. Technol. 231, 535 (2010)CrossRefGoogle Scholar
  26. 26.
    C.M. Rosell, J.A. Rojas, C.B. de Barber, Food Hydrocoll. 15, 75 (2001)CrossRefGoogle Scholar
  27. 27.
    M.W.J. Noort, D. van Haaster, Y. Hemery, H.A. Schols, R.J. Hamer, J. Cereal Sci. 52, 59 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Nawrocka, Intensiv. Agric. 28, 311 (2014)Google Scholar
  29. 29.
    D.C. Lee, P.I. Haris, D. Chapman, R.C. Mitchell, Biochemistry 29, 9185 (1990)CrossRefGoogle Scholar
  30. 30.
    P. Juszczyk, A.S. Kołodziejczyk, Z. Grzonka, J. Pept. Sci. 15, 23 (2008)CrossRefGoogle Scholar
  31. 31.
    P.R. Shewry, A.S. Tatham, J. Cereal Sci. 25, 207 (1997)CrossRefGoogle Scholar
  32. 32.
    H. Sugeta, Spectrochim. Acta A 1975(31), 1729 (1975)CrossRefGoogle Scholar
  33. 33.
    A. Nawrocka, M. Szymańska-Chargot, A. Miś, A.A. Ptaszyńska, R. Kowalski, P. Waśko, W.I. Gruszecki, J. Raman Spectrosc. 46, 309 (2015)CrossRefGoogle Scholar
  34. 34.
    J.S. Wall, J. Agric. Food Chem. 19, 619 (1971)CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, D. Zhao, T.J. Foster, Y. Liu, Y. Wang, S. Nirasawa, E. Tatsumi, Y. Cheng, Food Chem. 143, 163 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Meng, C.-Y. Ma, D.L. Phillips, Food Chem. 81, 411 (2003)CrossRefGoogle Scholar
  37. 37.
    M.N. Siamwiza, R.C. Lord, M.C. Chen, Biochemistry 14, 4870 (1975)CrossRefGoogle Scholar
  38. 38.
    P.R. Carey, in Biochemical Applications of Raman and Resonance Raman Spectroscopies, ed. by P.R. Carey, (Academic Press, New York 1982), p.65.Google Scholar
  39. 39.
    L. Lindlaud, E. Ferrer, M.C. Puppo, C. Ferrero, J. Agric. Food Chem. 59, 713 (2011)CrossRefGoogle Scholar
  40. 40.
    A. Angioloni, C. Collar, J. Food Eng. 91, 526 (2009)CrossRefGoogle Scholar
  41. 41.
    P.S. Belton, J. Cereal Sci. 29, 103 (1999)CrossRefGoogle Scholar
  42. 42.
    A.N. Bloksma, Cereal Chem. 52, 170r (1975).Google Scholar
  43. 43.
    P. Köhler, H.-D. Beltz, H. Wieser, Z. Lebensm, Unters. Forsch. 196, 239 (1993)CrossRefGoogle Scholar
  44. 44.
    M. Piber, P. Koehler, J. Agric. Food Chem. 53, 5276 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Wang, G. Oudgenoeg, T. van Vliet, R. Hamer, J. Cereal Sci. 38, 95 (2003)CrossRefGoogle Scholar
  46. 46.
    M. Wang, T. van Vliet, R. Hamer, J. Cereal Sci. 39, 395 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Agnieszka Nawrocka
    • 1
    Email author
  • Antoni Miś
    • 1
  • Monika Szymańska-Chargot
    • 1
  1. 1.Bohdan Dobrzanski Institute of Agrophysics Polish Academy of SciencesLublinPoland

Personalised recommendations