Advertisement

Food Biophysics

, Volume 10, Issue 1, pp 1–11 | Cite as

Cold Plasma: A novel Non-Thermal Technology for Food Processing

  • Rohit ThirumdasEmail author
  • Chaitanya Sarangapani
  • Uday S. Annapure
REVIEW ARTICLE

Abstract

In the past cold plasma is used for sterilization of sensitive materials and now it is extended to food industries as a novel technology. For years cold plasma processing has been viewed as useful for microbial inactivation while maintaining quality of fresh produce. However, this process is not effective for in vitro model food systems for inactivation of microbes or enzymes which are present in intact tissues, as it is a surface phenomenon. Cold plasma technology is also used to inactivate endogenous enzymes which are responsible for browning reactions particularly polyphenoloxidase and peroxidases. Several research investigations showed a reduced growth of microorganism via different mode of actions by etching phenomenon, cell disruption by electrophoration etc. Plasma technology is considered as modern non conventional technique which is used for the preparation of modified starches, altering its physical and chemical properties. Overall application of cold plasma for microbial destruction on different food substrates like fruits, meat products, cheese etc. was discussed. Besides this, it is also used to alter the germination rate of seeds. It is an eco-friendly process which is used in the preservation of food and other potential applications as an alternative to common techniques.

Keywords

Cold plasma Microbial inactivation Reactive species Surface modifications 

Notes

Acknowledgments

This research was supported by Union grant commission [UGC], New Dehli, India.

References

  1. 1.
    I. Langmuir, Proceedings of the National Academy of Sciences of the U.S.A 14 627 (1928)Google Scholar
  2. 2.
    Q.Z. Luo, N. Angelo, R.L. Merlino, Dept of phys & Astron Retrieved 20, (1998)Google Scholar
  3. 3.
    R.P. D’Agostino, P. Favia, C. Oehr, M.R. Wertheimerv, Plasma Process. Polym. 2, 7 (2005)Google Scholar
  4. 4.
    J.R. Roth, S. Nourgostar, T.A. Bonds, IEEE Trans. Plasma Sci. 35, 233 (2007)Google Scholar
  5. 5.
    M. Moisan, J. Barbeau, S. Moreau et al., Int. J. Pharmaceut. 2, 226 (2001)Google Scholar
  6. 6.
    I.A. Soloshenko, Plasma Phys. Rep. 26, 792 (2000)Google Scholar
  7. 7.
    P. Muranyi, J. Wunderlich, M. Heise, J. Appl. Microbiol. 103, 1535 (2007)Google Scholar
  8. 8.
    H.B. Van de Veen, H. Xie, E. Esveld et al., Food Microbiol. (2014). doi: 10.1016/j.fm.2014.03.018 Google Scholar
  9. 9.
    A. Fridman, Plasma chemistry (Cambridge Univ Press, New York, 2008)Google Scholar
  10. 10.
    H. Conrads, H. Schmidt, Plasma Sources Sci. Technol. 9, 441 (2000)Google Scholar
  11. 11.
    O. Kylian, J. Benedikt, L. Sirghi et al., Plasma Process Polym. 6, 255 (2009)Google Scholar
  12. 12.
    W.P. Menashi, Treatment of surfaces, US Patent 3,383,163 (1968)Google Scholar
  13. 13.
    L.E. Ashman, and W.P Menashi, US Patent 3,701,628. (1972)Google Scholar
  14. 14.
    R.M. Boucher, US Patent 4,207,286 (1980)Google Scholar
  15. 15.
    R.M. Bithell, US Patent 4,321,232 (1982)Google Scholar
  16. 16.
    P.T. Jacobs, S.M. Lin, Hydrogen, US Patent 4,643,786 (1987)Google Scholar
  17. 17.
    C.L. Nelson, T.J. Berger, Curr. Microbiol. 18, 275 (1989)Google Scholar
  18. 18.
    S. Hury, D.R. Vidal, F. Desor et al., Lett. Appl. Microbiol. 26, 417 (1988)Google Scholar
  19. 19.
    J. Feichtinger, A. Schulz, M. Walker, U. Schumacher, Surf Coat Technol. 174, 564 (2003)Google Scholar
  20. 20.
    K. Kelly-Wintenberg, A. Hodge, T. Montie, L. Deleanu et al., J. Vacuum Sci. Technol. 17, 1539 (1999)Google Scholar
  21. 21.
    K. Lee, K. Paek, W.T. Ju, Y. Lee, J. Microbiol. 44, 269 (2006)Google Scholar
  22. 22.
    O. Terrier, B. Essere, M. Yver, M. Barthelemy et al., J. Clin. Virol. 45, 119 (2009)Google Scholar
  23. 23.
    N. Philip, B. Saoudi, M.C. Crevier, M. Moisan, J. Barbeau, J. Pelletier, IEEE Trans. Plasma Sci. 30, 1429 (2002)Google Scholar
  24. 24.
    N.N. Misra, S. Patil, T. Moiseev, P. Bourke, J.P. Mosnier, K.M. Keener, P.J. Cullen, J. Food Eng. 125, 131 (2014)Google Scholar
  25. 25.
    C. Gurol, F.Y. Ekinci, N. Aslan, M. Korachi, Int. J. Food Microbiol. 15, 157 (2012)Google Scholar
  26. 26.
    P. Basaran, N. Basaran, L. Oksuz, Food Microbiol. 25, 626 (2008)Google Scholar
  27. 27.
    E. Fernandeza, B. Noriega, A. Thompson, Food Microbiol. 33, 24 (2012)Google Scholar
  28. 28.
    D. Ziuzina, S. Patil, P.J. Cullen, K.M. Keener, P. Bourke, Food Microbiol. 42, 109 (2014)Google Scholar
  29. 29.
    L. Vannini, C.L. Montanari, A. Berardinelli et al., World’s poultry science association. Netherlands (2009)Google Scholar
  30. 30.
    H.P. Song, B. Kim, J.H. Choe, S. Jung et al., Food Microbiol. 26, 432 (2009)Google Scholar
  31. 31.
    B. Surowsky, A. Frohling, N. Gottschalk, O. Schluter, D. Knorr, Int. J. Food Microbiol. 174, 63 (2014)Google Scholar
  32. 32.
    N. Rowan, S. Espie, J. Harrower, J. Anderson, L. Marsili, S. MacGregor, J. Food Protect. 70, 2805 (2007)Google Scholar
  33. 33.
    E. Noriega, G. Shama, A. Laca, M. Diaz et al., Food Microbiol. 28, 1293 (2011)Google Scholar
  34. 34.
    B. Kim, H. Yun, S. Jung, Y. Jung et al., Food Microbiol. 28, 9 (2011)Google Scholar
  35. 35.
    H.J. Lee, H. Jung, W. Choe, J.S. Ham et al., Food Microbiol. 28, 1468 (2011)Google Scholar
  36. 36.
    B.A. Niemira, J. Sites, J. Food Protect. 71, 1357 (2008)Google Scholar
  37. 37.
    J. Montenegro, R. Ruan, H. Ma, P. Chen, J. Food Sci. 67, 646 (2002)Google Scholar
  38. 38.
    S.B. Deng, R. Ruan, C.K. Mok, G.W. Huang et al., J. Food Sci. 72, 62 (2007)Google Scholar
  39. 39.
    X.M. Shi, G.J. Zhang, X.L. Wu, Y.X. Li et al., IEEE Trans. Plasma Sci. 39, 1591 (2011)Google Scholar
  40. 40.
    S. Perni, G. Shama, M.G. Kong, J. Food Protect. 71, 1619 (2008)Google Scholar
  41. 41.
    M. Selcuk, L. Oksuz, P. Basaran, Bioresour. Technol. 99, 5104 (2008)Google Scholar
  42. 42.
    A.S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard et al., Plasma Sources Sci. Technol. 20, 1 (2011)Google Scholar
  43. 43.
    I.K. Jahid, N. Han, S. Ha, Food Res. Int. 55, 181 (2014)Google Scholar
  44. 44.
    J.E. Kim, D. Lee, S.C. Min, Food Microbiol. 38, 128 (2014)Google Scholar
  45. 45.
    D. Dobrynin, G. Fridman, G. Friedman, A. Fridman doi: 10.1088/1367-2630/11/11/115020
  46. 46.
    H. Wiseman, B. Halliwell, Biochem. J. 313, 17 (1996)Google Scholar
  47. 47.
    J.J. Zou, C.J. Liu, B. Eliasson, Carbo. Polym. 55, 23 (2004)Google Scholar
  48. 48.
    M.F.A. Aziz, E.A. Mahmoudb, G.M. Elaragi, J. Stored Prod. Res. (2014). doi: 10.1016/j.jspr.2014.03.002 Google Scholar
  49. 49.
    R. Mogul, A.A. Bolshakov, S.L. Chan, R.M. Stevens et al., Biotechnol. Prog. 19, 776 (2003)Google Scholar
  50. 50.
    Z.B. Guzel-Seydim, A.K. Greene, A.C. Seydim, Leben-Wissenund-Technol. 37, 453 (2004)Google Scholar
  51. 51.
    T.C. Montie, K. Kelly-Wintenberg, J.R. Roth, Plasma Sci. IEEE Trans. 28, 41 (2002)Google Scholar
  52. 52.
    I. Fridovitch, Ann. Rev. Biochem. 64, 97 (1995)Google Scholar
  53. 53.
    M. Laroussi, D. Mendis, M. Rosenberg, New J. Phys. 5, 41 (2003)Google Scholar
  54. 54.
    D. Mendis, M. Rosenberg, F. Azam, Plasma Sci. IEEE Trans. 28, 1304 (2002)Google Scholar
  55. 55.
    S.A. Toepfl, V. Mathys Heinz, D. Knorr, Food Rev. Int. 22, 405 (2006)Google Scholar
  56. 56.
    E. Dolezalova, P. Lukes, Bioelectrochem 14, 1567 (2014)Google Scholar
  57. 57.
    B. Surowsky, A. Fischer, O. Schlueter, D. Knorr, Inn. Food Sci. Emerg. Technol. 19, 146 (2013)Google Scholar
  58. 58.
    G.E. Anthon, D.M. Barrett, J. Agric. Food Chem. 50, 4119 (2002)Google Scholar
  59. 59.
    P. Elez-Martinez, I. Aguilo-Aguayo, O. Martín-Belloso, J. Sci. Food Agric. 86, 71 (2006)Google Scholar
  60. 60.
    N.K. Rastogi, Food Rev. Int. 19, 229 (2003)Google Scholar
  61. 61.
    J. Giner, V. Gimeno, G.V. Barbosa-Canovas, O. Martin, Food Sci. Technol. Int. 7, 339 (2001)Google Scholar
  62. 62.
    K. Zhong, J. Wu, Z. Wang, F. Chen et al., Food Chem. 100, 115 (2007)Google Scholar
  63. 63.
    L. Zhang, Z. Lu, F. Lu, X. Bie, Food Cont. 17, 225 (2006)Google Scholar
  64. 64.
    B.R. Thakur, P.E. Nelson, Food Rev. Int. 14, 427 (1998)Google Scholar
  65. 65.
    S.K. Pankaj, N.N. Misra, P.J. Cullen, Innov. Food Sci. Emerg. Technol. 19, 153 (2013)Google Scholar
  66. 66.
    Y. Meiqiang, H. Mingjing, M. Buzhou, M. Tengcai, Plasma Sci. Technol. 7, 3143 (2005)Google Scholar
  67. 67.
    H.P. Li, L.Y. Wang, G. Li et al., Plasma Process Polym. 8, 224 (2011)Google Scholar
  68. 68.
    I. Pashkuleva, P.M. Lopez-Perez, R.L. Reis. (Woodhead Publishing Series in Biomaterials 2008) p.165Google Scholar
  69. 69.
    C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, Carbo. Polym. 49, 499 (2002a)Google Scholar
  70. 70.
    B. Zhang, S. Xiong, X. Li et al., Food Hydrocoll. 37, 69 (2014)Google Scholar
  71. 71.
    F. Starzyk, C.Y. Lii, P. Tomasik, Polym. J. Food Nutr. Sci. 10, 27 (2001)Google Scholar
  72. 72.
    C.Y. Lii, C.D. Liao, L. Stobinski, P. Tomasik, Carbo. Polym. 49, 449 (2002)Google Scholar
  73. 73.
    S.M. Mirabedini, H. Arabi, A. Salem, S. Asiaban, Prog. Org. Coat. 60, 105 (2007)Google Scholar
  74. 74.
    H. Szymanowskia, M. Kaczmareka, M. Gazicki-Lipmana et al., Surf. Coat. Technol. 200, 539 (2005)Google Scholar
  75. 75.
    C.T. Andrade, R.A. Simao, R.M.S.M. Thire, C.A. Achete, Carbo. Polym. 61, 407 (2005)Google Scholar
  76. 76.
    M. Lares, E. Perez, Plant Food Hum. Nutr. 61, 109 (2006)Google Scholar
  77. 77.
    N.N. Misra, S. Kaur, B.K. Tiwari et al., Food Hydrocoll. 44, 115 (2015)Google Scholar
  78. 78.
    M. Percival, Advanced Nutrition Publications Inc. (1996)Google Scholar
  79. 79.
    J.B. Harborne, C.A. Williams, Phytochem 55, 481 (2000)Google Scholar
  80. 80.
    F. Grzegorzewski, L.W. Rohn Kroh, M. Geyer, O.S. Schluter, Food Chem. 122, 1145 (2010)Google Scholar
  81. 81.
    F. Grzegorzewski, S. Rohn, A. Quade et al., Plasma Proc. Polym. 7, 466 (2010)Google Scholar
  82. 82.
    I.E. Garofuli, A.R. Jambrak, S. Milosevi et al., LWT - Food Sci. Technol. (2014). doi: 10.1016/j.lwt.2014.08.036 Google Scholar
  83. 83.
    B. Sera, I. Gajdova, M. Cernak et al., IEEE Trans. Plasma Sci. 238, 1365 (2012)Google Scholar
  84. 84.
    V. Filatova, M. Azharonok, V. Kadyrov et al., J. Phys. 56, 139 (2011)Google Scholar
  85. 85.
    M. Dhayal, S. Lee, S. Park, Vacuum 80, 499 (2006)Google Scholar
  86. 86.
    J. Jiafeng, H. Xin, L. Ling et al., Plasma Sci. Technol. 16, 54 (2014)Google Scholar
  87. 87.
    J.C. Volin, F.S. Denes, R.A. Young, S.M.T. Park, Crop Sci. 40, 1706 (2000)Google Scholar
  88. 88.
    C. Shao, D. Wang, X. Tang, L. Zhao, Y. Li, Math. Comput. Model. 58, 814 (2013)Google Scholar
  89. 89.
    M. Shakila, P. Sasikala, D. Aruna, V. Kavitha, R. Lavanya, Int. J. Emerg. Trends Eng. Dev. 4, 803 (2012)Google Scholar
  90. 90.
    S.K. Pankaja, C. Bueno-Ferrera, N.N. Misra et al., Trends Food Sci. Technol. 35, 5 (2014)Google Scholar
  91. 91.
    A. Vesel, M. Mozetic, Vacuum 86, 634 (2012)Google Scholar
  92. 92.
    M.S. Hedenqvist, K.S. Johansson, Surf. Coat. Technol. 172, 7 (2003)Google Scholar
  93. 93.
    S.K. Pankaj, C. Bueno-Ferrer, N.N. Misra et al., J. Renew. Mater. (2014). doi: 10.7569/JRM.2013.634129 Google Scholar
  94. 94.
    D. Dixon, B.J. Meenan, J. Adhes. Sci. Technol. 26, 2325 (2012)Google Scholar
  95. 95.
    K.N. Pandiyaraj, V. Selvarajan, R.R. Deshmukh, M. Bousmina, Surf. Coat. Technol. 202, 4218 (2008)Google Scholar
  96. 96.
    P. Slepicka, A.V. Kolsk, Z. Luxbacher et al., Beam Interact. Mater. Atoms 268, 2111 (2010)Google Scholar
  97. 97.
    Y. Akishev, M. Grushin, N. Dyatko et al., J. Phys. 41, 235 (2008)Google Scholar
  98. 98.
    K. Gotoh, A. Yasukawa, K. Taniguchi, J. Adhes. Sci. Technol. 25, 307 (2011)Google Scholar
  99. 99.
    I. Banik, K.S. Kim, Y.I. Yun et al., J. Adhes. Sci. Technol. 16, 1155 (2002)Google Scholar
  100. 100.
    M. Ataeefard, S. Moradian, M. Mirabedini, M. Ebrahimi, S. Asiaban, Prog. Org. Coat. 64, 482 (2009)Google Scholar
  101. 101.
    P.M.K. Reddy, C. Subrahmanyam, Ind. Eng. Chem. Res. 51, 11097 (2012)Google Scholar
  102. 102.
    B. Jiang, J. Zheng, X. Lu et al., Chem. Eng. J. 215, 969 (2013)Google Scholar
  103. 103.
    B. Jiang, J. Zheng, S. Qiu et al., Chem. Eng. J. 236, 348 (2014)Google Scholar
  104. 104.
    E. Marotta, M. Ceriani, C. Schiorlin, C. Ceretta, C. Paradisi, Water Res. 46, 6239 (2012)Google Scholar
  105. 105.
    M.R. Ghezzar, F. Abdelmalek, M. Belhadj, N. Benderdouche, A. Addou, Appl. Catal. B Environ. 72, 304 (2007)Google Scholar
  106. 106.
    H. Krause, B. Schweiger, J. Schuhmacher, S. Scholl, U. Steinfeld, Chemosphere 75, 163 (2009)Google Scholar
  107. 107.
    N.N. Misra, S.K. Pankaj, T. Walsh, F. O’Regan, P. Bourke, P.J. Cullen, J. Hazard. Mater. 271, 33 (2014)Google Scholar
  108. 108.
    S. Ognier, D. Iya-sou, C. Fourmond, S. Cavadias, Plasma Chem. Plasma Process. 29, 261 (2009)Google Scholar
  109. 109.
    P.A. Klockow and K.M. Keener (ASABE Meeting Presentation 1, 2008)Google Scholar
  110. 110.
    H.J. Kim, H.I. Yong, S. Park, K. Kim, W. Choe, C. Jo, Food Cont. 47, 451 (2015)Google Scholar
  111. 111.
    M. Besler, H. Steinhart, A. Paschke, J. Chromatogr. B 756, 207 (2001)Google Scholar
  112. 112.
    K. Hoffmann-Sommergruber, Int. Arch. Allergy Immunol. 122, 155 (2000)Google Scholar
  113. 113.
    R. Kasera, A.B... Singh, R. Kumar et al., Food Chem. Toxicol. 50, 3456 (2012)Google Scholar
  114. 114.
    F.M. Antonio, M.P.B. Vaz, R. Costa et al., Food Chem. 124, 1289 (2011)Google Scholar
  115. 115.
    H. Dalsgaard and A. Abbots, (CRC Press, Boca Raton, USA 2003)Google Scholar
  116. 116.
    O. Schluter, J. Ehlbeck, C. Hertel, Mol. Nutr. Food Res. 57, 920 (2013)Google Scholar
  117. 117.
    S. Preis, D. Klauson, A. Gregor J. Environ. Manag. 114, 125 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rohit Thirumdas
    • 1
    Email author
  • Chaitanya Sarangapani
    • 1
  • Uday S. Annapure
    • 1
  1. 1.Department of Food engineering & TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations