Food Biophysics

, Volume 10, Issue 2, pp 217–227 | Cite as

Effect of Molecular Weight Reduction, Acetylation and Esterification on the Emulsification Properties of Citrus Pectin

  • U. S. Schmidt
  • L. Koch
  • C. Rentschler
  • T. Kurz
  • H. U. Endreß
  • H. P. Schuchmann


Citrus pectin was chemically and thermally modified in order to increase the hydrophobic character of the molecule and its adsorptivity to the oil–water interface. The degree of acetylation and methylesterification was increased and the molecular weight was reduced. The emulsion formation and stabilization properties of these modified pectins were evaluated by surface and interfacial tension measurements and emulsification experiments. For the production of emulsions, a high pressure homogenizer was used. The viscosity ratio between oil and emulsion phase was adjusted by varying the amount of added sucrose. Pectins with a higher degree of methylesterification (DE) decrease the interfacial tension significantly compared to the unmodified pectin. Pectins with increased degree of acetylation (DAc), however, show higher interfacial tension values. In emulsification experiments, pectins with a reduced molecular weight do neither significantly reduce droplet sizes nor improve emulsion stability. Pectins with increased DE or DAc reduce the Sauter mean diameter d3,2 of emulsions significantly and, in case of an DE increase, also show excellent long term stability. Their performance is also superior to sugar beet pectin under comparable experimental conditions.


Emulsion Pectin Hydrocolloids High pressure homogenization Stability Emulsifier 


  1. 1.
    K. Frank, K. Köhler, H.P. Schuchmann, Formulation of labile hydrophilic ingredients in multiple emulsions: influence of the formulation’s composition on the emulsion’s stability and on the stability of entrapped bioactives. J Dispers Sci Technol 32, 1753–1758 (2011)CrossRefGoogle Scholar
  2. 2.
    D.J. Mcclements, E.A. Decker, J. Weiss, Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72, R109–24 (2007)CrossRefGoogle Scholar
  3. 3.
    H.P. Karbstein, Untersuchungen zum Herstellen und Stabilisieren von Öl-in-Wasser-Emulsionen, (1994)Google Scholar
  4. 4.
    P. Walstra, Principles of emulsion formation. Chem Eng Sci 48, 333–349 (1993)CrossRefGoogle Scholar
  5. 5.
    J. Sjöblom, Emulsions and emulsion stability (Taylor & Francis Group, LLC, Boca Raton, 2006)Google Scholar
  6. 6.
    B. Bentley, L. Leal, An experimental investigation of drop deformation and breakup in steady two-dimensional linear flows. J Fluid Mech 167, 241–283 (1986)CrossRefGoogle Scholar
  7. 7.
    H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14, 225–277 (1982)CrossRefGoogle Scholar
  8. 8.
    H. Armbruster, Untersuchungen zum kontinuierlichen Emulgierprozess in Kolloidmühlen unter Berücksichtigung spezifischer Emulgatoreigenschaften und der Strömungsverhältnisse im Dispergierspalt, (1990)Google Scholar
  9. 9.
    K.M.B. Jansen, W.G.M. Agterof, J. Mellema, Droplet breakup in concentrated emulsions. J Rheol (N Y N Y) 45, 227 (2001)CrossRefGoogle Scholar
  10. 10.
    E. Dickinson, Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23, 1473–1482 (2009)CrossRefGoogle Scholar
  11. 11.
    B.R. Thakur, R.K. Singh, A.K. Handa, Chemistry and uses of pectin - a review. Crit Rev Food Sci Nutr 37, 47–73 (1997)CrossRefGoogle Scholar
  12. 12.
    H.-U. Endreß, S.H. Christensen, Pectins, in Handbook of hydrocolloids, ed. by G.O. Philips, P.A. Williams (Woodhead Publishing Limited, Cambridge, 2009), pp. 274–297CrossRefGoogle Scholar
  13. 13.
    N. Garti, M.E. Leser, Emulsification properties of hydrocolloids. Polym Adv Technol 12, 123–135 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Akhtar, E. Dickinson, J. Mazoyer, V. Langendorff, Emulsion stabilizing properties of depolymerized pectin. Food Hydrocoll 16, 249–256 (2002)CrossRefGoogle Scholar
  15. 15.
    I.C.M. Dea, J.K. Madden, Acetylated pectic polysaccharides of sugar beet. Food Hydrocoll 1, 71–88 (1986)CrossRefGoogle Scholar
  16. 16.
    J. Leroux, V. Langendorff, G. Schick, V. Vaishnav, J. Mazoyer, Emulsion stabilizing properties of pectin. Food Hydrocoll 17, 455–462 (2003)CrossRefGoogle Scholar
  17. 17.
    J.V. Diaz, G.E. Anthon, D.M. Barrett, Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: effects of pH, temperature, and degree of methyl esterification. J Agric Food Chem 55, 5131–6 (2007)CrossRefGoogle Scholar
  18. 18.
    E. Jansen, R. Jang, Esterification of galacturonic acid and polyuronides with methanol-hydrogen chloride. J Am Chem Soc 68, 1475–7 (1946)CrossRefGoogle Scholar
  19. 19.
    J. Babic, D. Subaric, D. Ackar, D. Kovacevic, V. Pilizota, M. Kopjar, Preparation and characterization of acetylated tapioca starches. Dtsch Leb 103, 580–585 (2007)Google Scholar
  20. 20.
    H. Anger, G. Berth, Gel permeation chromatography and the Mark-Houwink relation for pectins with different degrees of esterification. Carbohydr Polym 6, 193–202 (1986)CrossRefGoogle Scholar
  21. 21.
    R. Houwink, Zusammenhang zwischen viscosimetrisch und osmotisch bestirnmten Polymerisationsgraden bei Hochpolymeren. J Prak Chem 157, 15–18 (1940)CrossRefGoogle Scholar
  22. 22.
    D. Hourdet, G. Muller, Solution properties of pectin polysaccharides II. Conformation and molecular size of high galacturonic acid content isolated pectin chains. Carbohydr Polym 16, 113–135 (1991)CrossRefGoogle Scholar
  23. 23.
    H. Deuel, L. Anyas-Weisz, J. Solms, Gewinnung und Charakterisierung von Natriumpektaten aus Zuckerrübenschnitzeln. Mitt Lebensm Hyg 45, 509–517 (1954)Google Scholar
  24. 24.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–54 (1976)CrossRefGoogle Scholar
  25. 25.
    L. Sperling, Introduction to physical polymer science (Wiley, Hoboken, 2006)Google Scholar
  26. 26.
    T. Funami, G. Zhang, M. Hiroe, S. Noda, M. Nakauma, I. Asai, M.K. Cowman, S. Al-Assaf, G.O. Phillips, Effects of the proteinaceous moiety on the emulsifying properties of sugar beet pectin. Food Hydrocoll 21, 1319–1329 (2007)CrossRefGoogle Scholar
  27. 27.
    R. Lutz, A. Aserin, L. Wicker, N. Garti, Structure and physical properties of pectins with block-wise distribution of carboxylic acid groups. Food Hydrocoll 23, 786–794 (2009)CrossRefGoogle Scholar
  28. 28.
    C.K. Siew, P.A. Williams, Role of protein and ferulic acid in the emulsification properties of sugar beet pectin. J Agric Food Chem 56, 4164–71 (2008)CrossRefGoogle Scholar
  29. 29.
    G. Qun, W. Ajun, Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydr Polym 64, 29–36 (2006)CrossRefGoogle Scholar
  30. 30.
    J. Mazoyer, J. Leroux, G. Bruneau, Use of depolymerized citrus fruit and apple pectins as emulsifiers and emulsion stabilizers, (1999)Google Scholar
  31. 31.
    G. Berth, H. Anger, I. Plashchina, E. Braudo, V. Tolstoguzov, study of the solutions of acidic polysaccharides. II. Study of some thermodynamic properties of the dilute pectin solutions with different degrees of esterification. Carbohydr Polym 2, 1–8 (1982)CrossRefGoogle Scholar
  32. 32.
    R. Baeza, C.C. Sanchez, A.M.R. Pilosof, J.M.R. Patino, Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight. Colloids Surf B: Biointerfaces 36, 139–45 (2004)CrossRefGoogle Scholar
  33. 33.
    E. Konował, G. Lewandowicz, J. Le Thanh-Blicharz, K. Prochaska, Physicochemical characterisation of enzymatically hydrolysed derivatives of acetylated starch. Carbohydr Polym 87, 1333–1341 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Wang, C. Liu, P. Chi, Aggregate formation and surface activity of partially deacetylated water-soluble chitin. Res Chem Intermed 34, 169–179 (2008)CrossRefGoogle Scholar
  35. 35.
    L. Nilsson, B. Bergenståhl, Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir 22, 8770–6 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Stang, H. Karbstein, H. Schubert, Adsorption kinetics of emulsifiers at oil–water interfaces and their effect on mechanical emulsification. Chem Eng Process Process Intensif 33, 307–311 (1994)CrossRefGoogle Scholar
  37. 37.
    L. Kempa, H.P. Schuchmann, H. Schubert, Tropfenzerkleinerung und Tropfenkoaleszenz beim mechanischen Emulgieren mit Hochdruckhomogenisatoren. Chem Ing Tech 78, 765–768 (2006)CrossRefGoogle Scholar
  38. 38.
    C. Rolin, I.B. Chrestensen, K.M. Hansen, J. Staunstrup, S. Sörensen, Tailoring pectin with specific shape, composition and esterification pattern. Gums Stab Food Ind 15, 13–25 (2009)Google Scholar
  39. 39.
    G. Morris, T. Foster, S. Harding, The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocoll 14, 227–235 (2000)CrossRefGoogle Scholar
  40. 40.
    V. Tolstoguzov, Some thermodynamic considerations in food formulation. Food Hydrocoll 17, 1–23 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Drusch, Sugar beet pectin: a novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll 21, 1223–1228 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Nakauma, T. Funami, S. Noda, S. Ishihara, S. Al-Assaf, K. Nishinari, G.O. Phillips, Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocoll 22, 1254–1267 (2008)CrossRefGoogle Scholar
  43. 43.
    P. Williams, G. Phillips, Emulsification properties of sugar beet pectin. Gums Stab Food Ind 14, 257–263 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • U. S. Schmidt
    • 1
  • L. Koch
    • 1
    • 2
  • C. Rentschler
    • 2
  • T. Kurz
    • 2
  • H. U. Endreß
    • 2
  • H. P. Schuchmann
    • 1
  1. 1.Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Herbstreith & Fox KG Pektin-FabrikenNeuenbürgGermany

Personalised recommendations