Advertisement

Food Biophysics

, Volume 9, Issue 4, pp 341–348 | Cite as

Effects of Ionic Strength, pH and Milk Serum Composition on Adsorption of Milk Proteins on to Hydroxyapatite Particles

  • Lucile Tercinier
  • Aiqian YeEmail author
  • Anne Singh
  • Skelte G. Anema
  • Harjinder Singh
SPECIAL ISSUE ARTICLE

Abstract

The effects of ionic strength, pH and milk mineral composition on the adsorption of caseins and whey proteins on to particles of hydroxyapatite (HA) were studied by determining the amounts of adsorbed proteins on HA using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and by zeta-potential measurements. The amount of adsorbed proteins increased with increasing ionic strength from 0 to 0.1 M and decreasing pH from 8 to 6, for both sodium caseinate (SC) and whey protein isolate (WPI). In general, when the absolute value of the zeta-potential decreased because of changes in pH or ionic strength, more protein was found to adsorb on to the HA particles. This may be attributed to a decrease in the electrostatic repulsions between the HA particles and the protein species. The effects of the composition of the milk serum were investigated using simulated milk ultrafiltrate (SMUF). Both caseins and whey proteins adsorbed less on to HA particles in SMUF than on to HA particles in water. However, the effect of the composition of SMUF on the adsorption was less pronounced for caseins than for whey proteins. This may be related to the phosphorylated nature of the caseins. As the phosphate groups of the caseins bind more strongly to the HA binding sites than the carboxyl groups of the whey proteins, caseins might compete better with the phosphate and citrate ions in the milk serum for adsorption.

Keywords

Milk proteins Caseins Whey proteins Calcium phosphate Hydroxyapatite Adsorption 

Notes

Acknowledgments

The authors gratefully thank the Fonterra Research and Development Centre for financial support. Ran Gao and Graeme Gillies are thanked for their helpful discussions and Claire Woodhall for proof-reading the manuscript.

Supplementary material

11483_2014_9360_MOESM1_ESM.doc (66 kb)
Online Resource 1 FTIR spectrum for HA powder used in the study. (DOC 66 kb)

References

  1. 1.
    J.R. Sharpe, R.L. Sammons, P.M. Marquis, Biomaterials 18(6), 471–476 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Rouahi, E. Champion, O. Gallet, A. Jada, K. Anselme, Colloids Surf. B: Biointerfaces 47(1), 10–19 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Tercinier, A. Ye, S. Anema, A. Singh, H. Singh, J. Colloid Interface Sci. 394, 458–466 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Tercinier, A. Ye, S.G. Anema, A. Singh, H. Singh, J. Agri, Food Chem. 62, 5983–5992 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Wang, C. Zhou, Y. Hong, X. Zhang, Interface Focus. 2, 259–277 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Kawasaki, J. Chromatogr. A 544, 147–184 (1991)CrossRefGoogle Scholar
  7. 7.
    M.J. Gorbunoff, S.N. Timasheff, Anal. Biochem. 136(2), 440–445 (1984)CrossRefGoogle Scholar
  8. 8.
    D.W.S. Wong, W.M. Camirand, A.E. Pavlath, N. Parris, M. Friedman, Crit. Rev. Food Sci. Nutr. 36(8), 807–844 (1996)CrossRefGoogle Scholar
  9. 9.
    G. Yin, Z. Liu, J. Zhan, F. Ding, N. Yuan, Chem. Eng. J. 87(2), 181–186 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Barroug, A. Lemaitre, P. Rouxhet, Colloids Surf. 37, 339–355 (1989)CrossRefGoogle Scholar
  11. 11.
    V. Hlady, H. Füredi-Milhofer, J. Colloid Interface Sci. 69(3), 460–468 (1979)CrossRefGoogle Scholar
  12. 12.
    M. Iafisco, M. Di Foggia, S. Bonora, M. Prat, N. Roveri, Dalton Trans. 40(4), 820–827 (2011)CrossRefGoogle Scholar
  13. 13.
    A. López-Macipe, J. Gómez-Morales, R. Rodriguez-Clemente, J. Colloid Interface Sci. 200(1), 114–120 (1998)CrossRefGoogle Scholar
  14. 14.
    K. Kandori, T. Kuroda, S. Togashi, E. Katayama, J. Phys. Chem. B 115, 653–659 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Jenness, J. Koops, Neth. Milk Dairy J. 16, 153–164 (1962)Google Scholar
  16. 16.
    S.G. Anema, Dairy Sci. Technol. 89(3–4), 269–282 (2009)CrossRefGoogle Scholar
  17. 17.
    L. Dattolo, E.L. Keller, G. Carta, J. Chromatogr. A 1217(48), 7573–7578 (2010)CrossRefGoogle Scholar
  18. 18.
    D.T.H. Wassell, R.C. Hall, G. Embery, Biomaterials 16(9), 697–702 (1995)CrossRefGoogle Scholar
  19. 19.
    X.-D. Zhu, H.-S. Fan, D.-X. Li, Y.-M. Xiao, X.-D. Zhang, J. Biomed. Mater. Res. B Appl. Biomater. 82B(1), 65–73 (2007)CrossRefGoogle Scholar
  20. 20.
    M.J. Gorbunoff, Anal. Biochem. 136(2), 433–439 (1984)CrossRefGoogle Scholar
  21. 21.
    G. Bernardi, T. Kawasaki, Biochim. Biophys. Acta 160(3), 301–310 (1968)CrossRefGoogle Scholar
  22. 22.
    A.C. Juriaanse, M. Booij, J. Arends, J.J. ten Bosch, Arch. Oral Biol. 26(2), 91–96 (1981)CrossRefGoogle Scholar
  23. 23.
    K.L. Jones, C.R. O’Melia, J. Membr. Sci. 165(1), 31–46 (2000)CrossRefGoogle Scholar
  24. 24.
    K. Nakanishi, T. Sakiyama, K. Imamura, J. Biosci. Bioeng. 91(3), 233–244 (2001)CrossRefGoogle Scholar
  25. 25.
    K. Kandori, K. Miyagawa, T. Ishikawa, J. Colloid Interface Sci. 273(2), 406–413 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Srinivasan, H. Singh, P.A. Munro, Food Hydrocoll. 14(5), 497–507 (2000)CrossRefGoogle Scholar
  27. 27.
    A. HadjSadok, A. Pitkowski, T. Nicolai, L. Benyahia, N. Moulai-Mostefa, Food Hydrocoll. 22(8), 1460–1466 (2008)CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, D.G. Dalgleish, H.D. Goff, Colloids Surf. B: Biointerfaces 34(2), 113–121 (2004)CrossRefGoogle Scholar
  29. 29.
    D.V. Brooksbank, C.M. Davidson, D.S. Horne, J. Leaver, J. Chem. Soc. Faraday Trans. 89(18), 3419–3425 (1993)CrossRefGoogle Scholar
  30. 30.
    A.J. Carr, P.A. Munro, O.H. Campanella, Int. Dairy J. 12(6), 487–492 (2002)CrossRefGoogle Scholar
  31. 31.
    J. Desmet, I. Hanssens, F. van Cauwelaert, Biochim. Biophys. Acta 912(2), 211–219 (1987)CrossRefGoogle Scholar
  32. 32.
    H.E. Swaisgood, in Advanced dairy chemistry Volume 1: proteins, ed. by P.F. Fox, P.L.H. McSweeney (Kluwer Academic/Plenum Publishers, New York, 2003), p. 134Google Scholar
  33. 33.
    J.-J. Baumy, P. Guenot, S. Sinbandhit, G. Brulé, J. Dairy Res. 56(03), 403–409 (1989)CrossRefGoogle Scholar
  34. 34.
    C. Holt, Eur. Biophys. J. 33(5), 421–434 (2004)CrossRefGoogle Scholar
  35. 35.
    G. Bernardi, M.-G. Giro, C. Gaillard, Biochim. Biophys. Acta 278(3), 409–420 (1972)CrossRefGoogle Scholar
  36. 36.
    P. Walstra, R. Jenness, Dairy chemistry and physics (Wiley, New York, 1984), pp. 108–1141Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lucile Tercinier
    • 1
  • Aiqian Ye
    • 1
    Email author
  • Anne Singh
    • 2
  • Skelte G. Anema
    • 2
  • Harjinder Singh
    • 1
  1. 1.Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
  2. 2.Fonterra Research and Development CentrePalmerston NorthNew Zealand

Personalised recommendations