Advertisement

Food Biophysics

, Volume 9, Issue 3, pp 285–291 | Cite as

Competitive Adsorption of Lecithin and Saliva at the O/W Interface in Relation to the Oral Processing of Lipid Continuous Foods

  • Perrine Delime
  • Natasja Lemmens-Smink
  • Bettina WolfEmail author
ORIGINAL ARTICLE

Abstract

This research is relevant to oral processing of lipid continuous foods. During this first step of food digestion, lipid continuous foods such as chocolate or margarine phase invert into oil-in-water emulsions stimulated through the mechanical action of tongue and teeth in combination with the change in temperature and the high surface activity of salivary proteins. These are hypothesised to stabilise the newly formed interface in competition with surfactants or surface active molecules released from the food if present. Here competitive adsorption between mechanically stimulated human whole saliva (HWS) and lecithin dissolved in sunflower oil freed of interfacially active contaminants was investigated in-vitro using a pendant drop tensiometer for dynamic interfacial tension and interfacial rheological measurements. Initially, it was validated that the interfacial properties of HWS samples remained unaffected by frozen storage at −80 °C during 6 weeks. Protein concentration affected the absolute values of interfacial tension and in particular the dilatational elastic modulus. Competitive adsorption studies revealed a mixed interface and it follows that emulsion stabilisation during oral processing involves both salivary proteins and lecithin present in the oil phase.

Keywords

Oral processing Human whole saliva Interfacial rheology Competitive adsorption Lipid continuous foods Lecithin 

Notes

Acknowledgments

PD would like to thank Julia Maldonado-Valderrama for discussion and MARS NL is thanked for allowing this work to be published.

References

  1. 1.
    A.M. Carvalho-da-Silva, I.V. Damme, B. Wolf, J. Hort, Characterisation of chocolate eating behaviour. Physiol. Behav. 104(5), 929–33 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Golding, T.J. Wooster, The influence of emulsion structure and stability on lipid digestion. Curr. Opin. Colloid Interface Sci. 15(1–2), 90–101 (2010)CrossRefGoogle Scholar
  3. 3.
    G.A. van Aken, Modelling texture perception by soft epithelial surfaces. Soft Matter 6(5), 826–834 (2010)CrossRefGoogle Scholar
  4. 4.
    G.A. van Aken, M.H. Vingerhoeds, E.H.A. de Hoog, Colloidal behaviour of food emulsions under oral conditions, in Food colloids: interactions, microstructure and Processing, ed. by E. Dickinson (Royal Soc Chemistry, Cambridge, 2005), pp. 356–366CrossRefGoogle Scholar
  5. 5.
    E. Silletti, M.H. Vingerhoeds, W. Norde, G.A. Van Aken, The role of electrostatics in saliva-induced emulsion flocculation. Food Hydrocoll. 21(4), 596–606 (2007)CrossRefGoogle Scholar
  6. 6.
    I. Gulseren, M. Corredig, Interactions at the interface between hydrophobic and hydrophilic emulsifiers: polyglycerol polyricinoleate (PGPR) and milk proteins, studied by drop shape tensiometry. Food Hydrocoll. 29(1), 193–198 (2012)CrossRefGoogle Scholar
  7. 7.
    B.S. Murray, E. Dickinson, Interfacial rheology and the dynamic properties of absorbed and surfactants films of food proteins. J. Jpn. Soc. Food Sci. Technol. 43(11), 1239–1241 (1996)Google Scholar
  8. 8.
    V.I. Kovalchuk, E.V. Aksenenko, R. Miller, V.B. Fainerman, Surface dilatational rheology of mixed adsorption layers of proteins and surfactants at liquid interfaces, in Interfacial rheology, ed. by R. Miller, L. Liggieri (Brill, Leiden, 2009), pp. 333–371Google Scholar
  9. 9.
    R.G. Schipper, E. Silletti, M.H. Vinyerhoeds, Saliva as research material: biochemical, physicochemlical and practical aspects. Arch. Oral Biol. 52(12), 1114–1135 (2007)CrossRefGoogle Scholar
  10. 10.
    J.R. Stokes, G.A. Davies, Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44(3), 141–160 (2007)Google Scholar
  11. 11.
    D. Rossetti, F. Ravera, L. Liggieri, Effect of tea polyphenols on the dilational rheology of Human Whole Saliva (HWS): part 1. HWS characterization. Colloids Surf. B: Biointerfaces 110, 466–473 (2013)CrossRefGoogle Scholar
  12. 12.
    G.A. van Aken, M.H. Vingerhoeds, E.H.A. de Hoog, Food colloids under oral conditions. Curr. Opin. Colloid Interface Sci. 12(4–5), 251–262 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Van Nieuw Amerongen, J.G.M. Bolscher, E.C.I. Veerman, Salivary proteins: protective and diagnostic value in cariology? Caries Res. 38(3), 247–53 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Zalewska, K. Zwierz, K. Zolkowski, A. Gindzienski, Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 47(4), 1067–1079 (2000)Google Scholar
  15. 15.
    E. Silletti, R.M.P. Vitorino, R. Schipper, F.M.L. Amado, M.H. Vingerhoeds, Identification of salivary proteins at oil–water interfaces stabilized by lysozyme and beta-lactoglobulin. Arch. Oral Biol. 55(4), 268–278 (2010)CrossRefGoogle Scholar
  16. 16.
    P. Denny, F.K. Hagen, M. Hardt, L.J. Liao, W.H. Yan, M. Arellanno, S. Bassilian, G.S. Bedi, P. Boontheung, D. Cociorva, C.M. Delahunty, T. Denny, J. Dunsmore, K.F. Faull, J. Gilligan, M. Gonzalez-Begne, F. Halgand, S.C. Hall, X.M. Han, B. Henson, J. Hewel, S. Hu, S. Jeffrey, J. Jiang, J.A. Loo, R.R.O. Loo, D. Malamud, J.E. Melvin, O. Miroshnychenko, M. Navazesh, R. Niles, S.K. Park, A. Prakobphol, P. Ramachandran, M. Richert, S. Robinson, M. Sondej, P. Souda, M.A. Sullivan, J. Takashima, S. Than, J.H. Wang, J.P. Whitelegge, H.E. Witkowska, L. Wolinsky, Y.M. Xie, T. Xu, W.X. Yu, J. Ytterberg, D.T. Wong, J.R. Yates, S.J. Fisher, The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 7(5), 1994–2006 (2008)CrossRefGoogle Scholar
  17. 17.
    M.J. Levine, Development of Artificial Salivas. Crit. Rev. Oral Biol. Med. 4(3–4), 279–286 (1993)Google Scholar
  18. 18.
    L. Engelen, P.A.M. van den Keybus, R.A. de Wijk, E.C.I. Veerman, A.V.N. Amerongen, F. Bosman, J.F. Prinz, A. van der Bilt, The effect of saliva composition on texture perception of semi-solids. Arch. Oral Biol. 52(6), 518–525 (2007)CrossRefGoogle Scholar
  19. 19.
    E. Silletti, M.H. Vingerhoeds, G.A. Van Aken, W. Norde, Rheological behavior of food emulsions mixed with saliva: effect of oil content, salivary protein content, and saliva type. Food Biophys. 3(3), 318–328 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Schipper, A. Loof, J. de Groot, L. Harthoorn, E. Dransfield, W. van Heerde, SELDI-TOF-MS of saliva: methodology and pre-treatment effects. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 847(1), 45–53 (2007)CrossRefGoogle Scholar
  21. 21.
    G.B. Proctor, S. Hamdan, G.H. Carpenter, P. Wilde, A statherin and calcium enriched layer at the air interface of human parotid saliva. Biochem. J. 389, 111–116 (2005)CrossRefGoogle Scholar
  22. 22.
    A.G. Gaonkar, Interfacial-tensions of vegetable oil–water systems - effect of oil purification. J. Am. Oil Chem. Soc. 66(8), 1090–1092 (1989)CrossRefGoogle Scholar
  23. 23.
    M.A. Bos, T. van Vliet, Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interf. Sci. 91(3), 437–471 (2001)CrossRefGoogle Scholar
  24. 24.
    S.P. Humphrey, R.T. Williamson, A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 85(2), 162–169 (2001)CrossRefGoogle Scholar
  25. 25.
    V.N. Kazakov, A.A. Udod, I.I. Zinkovych, V.B. Fainerman, R. Miller, Dynamic surface tension of saliva: general relationships and application in medical diagnostics. Colloids Surf. B: Biointerfaces 74(2), 457–461 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Yamamoto, M. Araki, Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci. Biotechnol. Biochem. 61(11), 1791–1795 (1997)CrossRefGoogle Scholar
  27. 27.
    F. Ravera, M. Ferrari, L. Liggieri, G. Loglio, E. Santini, A. Zanobini, Liquid-liquid interfacial properties of mixed nanoparticle-surfactant systems. Colloids Surf. A Physicochem. Eng. Asp. 323(1–3), 99–108 (2008)CrossRefGoogle Scholar
  28. 28.
    F. Ravera, L. Liggieri, G. Loglio, Dilatational rheology of adsorbed layers by oscillating drops and bubbles, in Interfacial rheology, ed. by R. Miller, L. Liggieri (Brill, Leiden, 2009), pp. 137–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Perrine Delime
    • 1
  • Natasja Lemmens-Smink
    • 2
  • Bettina Wolf
    • 1
    Email author
  1. 1.Division of Food SciencesThe University of NottinghamLoughboroughUK
  2. 2.Mars Nederland B.V.VeghelNetherlands

Personalised recommendations