Advertisement

Food Biophysics

, Volume 10, Issue 1, pp 30–38 | Cite as

Effect of pH and NaCl on the Emulsifying Properties of a Napin Protein Isolate

  • Lamlam Cheung
  • Janitha Wanasundara
  • Michael T. NickersonEmail author
ORIGINAL ARTICLE

Abstract

The physicochemical and emulsifying properties of a napin protein isolate (NPI) were examined as a function of pH (3.0, 5.0 and 7.0) and NaCl content (0, 50 and 100 mM). Specifically, surface charge and hydrophobicity, interfacial tension (IT), solubility, and the emulsifying activity (EAI) and stability (ESI) indices were studied. Surface charge in the absence of NaCl ranged between ~ +10 mV to ~ −5 mV depending on the pH, becoming electrically neutral at pH 6.6. Overall, surface hydrophobicity decreased as the pH increased, whereas it increased as NaCl levels were raised. Solubility was high (~93–100 %) regardless of the conditions. NPI’s ability to reduce IT was enhanced at higher pHs, however the effect of NaCl was pH dependent with the addition of NaCl enhancing and decreasing NPI’s ability to reduce IT at pH 3.0 and 7.0, respectively. Overall, EAI values were similar in magnitude at pH 3.0 and 5.0, and lower at pH 7.0. The effect of NaCl on EAI was similar at pH 3.0 and 7.0, where EAI at the 0 mM and 100 mM NaCl level were similar in magnitude, but increased significantly at the addition of 50 mM NaCl. However, the EAI values at pH 5.0 decreased as the level of NaCl increased. Overall, the stability of NPI-stabilized emulsions degraded rapidly and the addition of salt induced faster emulsion instability.

Keywords

Napin protein isolate pH NaCl Emulsification Physicochemical properties 

Notes

Acknowledgments

Funding for this research was provided by the Saskatchewan Canola Development Commission and the Saskatchewan Agriculture and Development Fund.

References

  1. 1.
    Canola Council of Canada, What is Canola? (Canola Council of Canada, 2011), http://www.canolacouncil.org/oil-and-meal/what-is-canola/. Accessed 3 May 2013
  2. 2.
    R.Y. Khattab, S.D. Arntfield, LWT–Food Sci. Technol. 42, 1119–1124 (2009)Google Scholar
  3. 3.
    R.W. Newkirk, Canola Meal Feed Industry Guide, 4th edn. (Canola Council of Canada, Winnipeg, 2009)Google Scholar
  4. 4.
    M. Aider, C. Barbana, Trends Food Sci. Technol. 22(21–39) (2011)Google Scholar
  5. 5.
    J. Wu, A. Muir, J. Food Sci. 73, c210–c216 (2008)CrossRefGoogle Scholar
  6. 6.
    R. Ohlson, K. Anjou, J. Am. Oil Chem. Soc. 56, 431–437 (1979)CrossRefGoogle Scholar
  7. 7.
    R.E. Aluko, T. McIntosh, J. Sci. Food Agric. 81, 391–396 (2001)CrossRefGoogle Scholar
  8. 8.
    A. Can Karaca, N. Low, M. Nickerson, Food Res. Int. 44, 2742–2750 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Can Karaca, N. Low, M. Nickerson, Food Res. Int. 44, 2991–2998 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Dong, L. Guo, F. Wei, J. Li, M. Jiang, G. Li, Y. Zhao, H. Chen, J. Sci. Food Agric. 91, 1488–1498 (2011)CrossRefGoogle Scholar
  11. 11.
    J.P. Krause, K.D. Schwenke, Colloids Surf. B 21, 29–36 (2001)CrossRefGoogle Scholar
  12. 12.
    S.H. Tan, R.J. Mailer, C.L. Blanchard, S.O. Agboola, Food Res. Int. 44, 1075–1082 (2011)CrossRefGoogle Scholar
  13. 13.
    K. Schwenke, in New and Developing Sources of Food Proteins, ed. by J.E. Hudson (Chapman and Hall, London, 1994), p. 281CrossRefGoogle Scholar
  14. 14.
    D. Zirwer, K. Gast, H. Welfle, B.S. Schlesier, Int. J. Biol. Macromol. 7, 105–108 (1985)CrossRefGoogle Scholar
  15. 15.
    M.L. Crouch, K.M. Tenbarge, A.E. Simon, R. Ferl, J Mol. Appl. Genet. 2, 273–283 (1983)Google Scholar
  16. 16.
    P.M. Gehrig, A. Kryzaniak, J. Barciszewski, K. Biemann, Biochemistry 93, 3647–3652 (1998)Google Scholar
  17. 17.
    K. Schwenke, Die Nahrung 34, 225–240 (1990)CrossRefGoogle Scholar
  18. 18.
    S.E. Hill, in Methods of Testing Protein Functionality, ed. by G.M. Hall (Chapman and Hall, New York, 1996), p. 153CrossRefGoogle Scholar
  19. 19.
    D.J. McClements, Food Emulsions: Principles, Practice and Techniques (CRC Press, Boca Raton, 2005)Google Scholar
  20. 20.
    D.G. Dalgleish, Trends Food Sci. Technol. 8, 1–6 (1997)CrossRefGoogle Scholar
  21. 21.
    W. Xu, A. Nikolov, D.T. Wasan, J. Food Eng. 66, 97–105 (2005)CrossRefGoogle Scholar
  22. 22.
    C. Malabat, I.R.S. Nchez-Vioque, C. Rabiller, J. Guguen, J. Am. Oil Chem. Soc. 78, 235–242 (2001)CrossRefGoogle Scholar
  23. 23.
    J.P.D. Wanasundara, T.C. McIntosh, A process of aqueous protein extraction from Brassicaceae oilseeds, WIPO PCT/CA 2008/001055 (2008)Google Scholar
  24. 24.
    AOAC, Official Method of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington, DC, 2003)Google Scholar
  25. 25.
    B.A. Bidlingmeyer, S.A. Cohen, T.L. Tarvin, B. Frost, J. Assoc. Off. Anal. Chem. 70, 241–247 (1987)Google Scholar
  26. 26.
    U.K. Laemmli, Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  27. 27.
    P.W.M.L.H.K. Marambe, P.J. Shand, J.P.D. Wanasundara, J. Am. Oil Chem. Soc. 85, 1155–1164 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Kato, S. Nakai, Biochem. Biophys. Acta. 624, 13–20 (1980)Google Scholar
  29. 29.
    K.N. Pearce, J.E. Kinsella, J. Agric. Food Chem. 26, 716–723 (1978)CrossRefGoogle Scholar
  30. 30.
    G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Process Biochem. 42, 1419–1428 (2007)CrossRefGoogle Scholar
  31. 31.
    D.J. McClements, Curr. Opin. Colloid Interface Sci. 9, 305–313 (2004)CrossRefGoogle Scholar
  32. 32.
    A. Krzyzaniak, T. Burova, T. Haertle, J. Barciszewski, Die Nahrung 42, 201–204 (1998)CrossRefGoogle Scholar
  33. 33.
    T.C. Jyothi, S.A. Singh, A.G. Appu Rao, J. Agric. Food Chem. 55, 4229–4236 (2007)CrossRefGoogle Scholar
  34. 34.
    J.P.D. Wanasundara, S.J. Abeysekara, T.C. McIntosh, K.C. Falk, J. Am. Oil Chem. Soc. 89, 869–881 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Yoshie-Starka, Y. Wada, A. Wäsche, Food Chem. 107, 32–33 (2008)CrossRefGoogle Scholar
  36. 36.
    M.A.C. Stuart, G.J. Fleer, J. Lyklema, W. Norde, J.M.H.M. Scheutjens, Adv. Colloid Interface Sci. 34, 477–535 (1991)CrossRefGoogle Scholar
  37. 37.
    J.E. Kinsella, S. Damodaran, J.B. German, in New Protein Foods: Seed Proteins, ed. by A. Altshul, H. Wilcke (Academic Press, London, 1985)Google Scholar
  38. 38.
    S. Damodaran, in Food Proteins, ed. by J.E. Kinsella, W.E. Sousie (American Oil Chemists’ Society, Champaign, 1989)Google Scholar
  39. 39.
    D.G. Dalgleish, in Food Emulsions, ed. by S.E. Friberg, K. Larsson, J. Sjöblom, 4th edn. ((Marcel Dekker Inc, New York, 2004)Google Scholar
  40. 40.
    J.F. Zayas, Functionality of Proteins in Food (Springer, Germany, 1997), pp. 134–227CrossRefGoogle Scholar
  41. 41.
    N.J. Krog, F.V. Sparsø, in Food Emulsions, ed. by S.E. Friberg, K. Larsson, J. Sjöblom, 4th edn. (Marcel Dekker Inc, New York, 2004)Google Scholar
  42. 42.
    A.A. Kulmyrzaeva, H. Schubertb, Food Hydrocoll. 18, 13–19 (2004)CrossRefGoogle Scholar
  43. 43.
    B. Wang, D. Li, L.-J. Wang, B. Adhikari, J. Shi, J. Food Eng. 100, 417–426 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lamlam Cheung
    • 1
  • Janitha Wanasundara
    • 2
  • Michael T. Nickerson
    • 1
    Email author
  1. 1.Department of Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada
  2. 2.Agriculture and Agri-Food CanadaSaskatoon Research CentreSaskatoonCanada

Personalised recommendations