Skip to main content
Log in

Kinetics of Colour Development of Molten Glucose, Fructose and Sucrose at High Temperatures

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Pure sugar crystals melt at high temperature and liquids progressively change from colourless to dark brown, attracting much attention as a possible source of caramel or as a cooking media. The aim of this study was to evaluate colour development in pure sugar melts at temperatures above 160 °C as a function of time. Crystalline glucose, fructose and sucrose (12 g) were placed in test tubes and subjected to temperatures of 160, 170, 180, 190 and 200 °C (±1 °C). Colour was determined quantitatively with a computer vision system and evaluated as lightness/darkening (L/L0) and total colour difference (∆E). A modified and reparameterised Gompertz model was successfully used to explain the kinetic behavior of L/L0 and ∆E and the Arrhenius type dependency was found to relate the temperature effect. Fructose had the highest reaction rates for L/L0 and ∆E at all temperatures. The activation energy values for ∆E were 56.1, 44.5 and 126.8 kJ/mol for glucose, fructose and sucrose, respectively. Crystalline sucrose does not brown but the colour develops at surfaces which become noncrystalline and sticky before the colour appears. Glucose had the lowest reaction rates for L/L0, proving that is more appropriate to use in products with extensive thermal treatments, making it more suitable to manage non-enzymatic browning reactions and obtain products with different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.W. Kroh, Food Chem. 51(4), 373–379 (1994)

    Article  CAS  Google Scholar 

  2. J. Claude, J. Ubbink, Food Chem. 96(3), 402–410 (2006)

    Article  CAS  Google Scholar 

  3. W. Kamuf, A. Nixon, O. Parker, G. Barnum, D. Willamson, Cereal Foods World. 48(2), 64–69 (2003)

    CAS  Google Scholar 

  4. N. Acevedo, C. Schebor, M.P. Buera, J. Food Eng. 77(4), 1108–1115 (2006)

    Article  CAS  Google Scholar 

  5. S.M. Lievonen, T.J. Laaksonen, Y.H. Roos, J. Agric. Food Chem. 50(24), 7034–7041 (2002)

    Article  CAS  Google Scholar 

  6. M.P. Buera, M. Karel, Food Chem. 52(2), 167–173 (1995)

    Article  CAS  Google Scholar 

  7. R. Karmas, M. Pilar Buera, M. Karel, J. Agric. Food Chem. 40(5), 873–879 (1992)

    Article  CAS  Google Scholar 

  8. N.C. Acevedo, V. Briones, P. Buera, J.M. Aguilera, J. Food Eng. 85(2), 222–231 (2008)

    Article  CAS  Google Scholar 

  9. M.A.C. Quintas, T.R.S. Brandão, C.L.M. Silva, J. Food Eng. 83(4), 483–491 (2007)

    Article  CAS  Google Scholar 

  10. G. Sengar, H. Sharma, J. Food Sci. Technol. 1–11 (2012)

  11. M.J. Scotter, Food Addit. Contam. 28(5), 527–596 (2011)

    Article  CAS  Google Scholar 

  12. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), EFSA J. 9(3), 2004–2106 (2011)

    Google Scholar 

  13. E. Capuano, V. Fogliano, LWT Food Sci. Technol. 44(4), 793–810 (2011)

    Article  CAS  Google Scholar 

  14. P.C. Chan, G.D. Hills, G.E. Kissling, A. Nyska, Arch. Toxicol. 82(1), 45–53 (2008)

    Article  CAS  Google Scholar 

  15. Y. Grosse, R. Baan, B. Secretan-Lauby et al., Lancet Oncol. 12(4), 328–329 (2011)

    Article  Google Scholar 

  16. P.-J. Tsai, T.-Y. Yu, S.-H. Chen, C.-C. Liu, Y.-F. Sun, Food Res. Int. 42(3), 380–386 (2009)

    Article  CAS  Google Scholar 

  17. L. Manzocco, S. Calligaris, D. Mastrocola, M.C. Nicoli, C.R. Lerici, Trends Food Sci. Technol. 11(9–10), 340–346 (2000)

    Article  CAS  Google Scholar 

  18. N. Turkmen, F. Sari, E.S. Poyrazoglu, Y.S. Velioglu, Food Chem. 95(4), 653–657 (2006)

    Article  CAS  Google Scholar 

  19. L.A. Ameur, O. Mathieu, V. Lalanne, G. Trystram, I. Birlouez-Aragon, Food Chem. 101(4), 1407–1416 (2007)

    Article  CAS  Google Scholar 

  20. S. González-Mateo, M.L. González-SanJosé, P. Muñiz, Food Chem. Toxicol. 47(11), 2798–2805 (2009)

    Article  Google Scholar 

  21. A. Serpen, V. Gökmen, V. Fogliano, Meat Sci. 90(1), 60–65 (2012)

    Article  CAS  Google Scholar 

  22. Y. Liu, D.D. Kitts, Food Res. Int. 44(8), 2418–2424 (2011)

    Article  CAS  Google Scholar 

  23. S.M. Antony, I.Y. Han, J.R. Rieck, P.L. Dawson, J. Food Sci. 67(5), 1719–1724 (2002)

    Article  CAS  Google Scholar 

  24. S. Benjakul, W. Visessanguan, V. Phongkanpai, M. Tanaka, Food Chem. 90(1–2), 231–239 (2005)

    Article  CAS  Google Scholar 

  25. G.A. Leiva-Valenzuela, J.M. Aguilera, Food Control. 33(1), 166–173 (2013)

  26. M. Quintas, T.R.S. Brandão, C.L.M. Silva, J. Food Eng. 78(2), 537–545 (2007)

    Article  Google Scholar 

  27. A. Ibarz, J. Pagán, S. Garza, J. Sci. Food Agric. 80(8), 1162–1168 (2000)

    Article  CAS  Google Scholar 

  28. H.S. Lee, S. Nagy, J. Food Process. Preserv. 14(3), 171–178 (1990)

    Article  CAS  Google Scholar 

  29. B. Jiang, Y. Liu, B. Bhandari, W. Zhou, J. Agric. Food Chem. 56(13), 5138–5147 (2008)

    Article  CAS  Google Scholar 

  30. E. Arena, B. Fallico, E. Maccarone, Int. J. Food Sci. Technol. 36(2), 145–151 (2001)

    Article  CAS  Google Scholar 

  31. A. Ramirez-Jimenez, E. Guerra-Hernandez, B. Garcia-Villanova, J. Agric. Food Chem. 48(9), 4176–4181 (2000)

    Article  CAS  Google Scholar 

  32. Q. Bao, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 9(6), 1383–1388 (2008)

    Article  CAS  Google Scholar 

  33. J.W. Lee, L.C. Thomas, S.J. Schmidt, J. Agric. Food Chem. 59(2), 684–701 (2011)

    Article  CAS  Google Scholar 

  34. Y.H. Roos, M. Karel, T.P. Labuza et al., J. Agric. Food Chem. 61(13), 3167–3178 (2013)

    Article  CAS  Google Scholar 

  35. M. Quintas, C. Guimarães, J. Baylina, T.R.S. Brandão, C.L.M. Silva, Innov. Food Sci. Emerg. Technol. 8(2), 306–315 (2007)

    Article  CAS  Google Scholar 

  36. G. Eggleston, B.J. Trask-Morrell, J.R. Vercellotti, J. Agric. Food Chem. 44(10), 3319–3325 (1996)

    Article  CAS  Google Scholar 

  37. G.N. Richards, Int. Sugar J. 88(1052), 145–148 (1986)

    CAS  Google Scholar 

  38. I. Šimkovic, I. Šurina, M. Vričan, J. Anal. Appl. Pyrolysis 70(2), 493–504 (2003)

    Article  Google Scholar 

  39. H. Yamaguchi, T. Masuda, J. Agric. Food Chem. 59(18), 9770–9775 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research has been funded by CONICYT’s doctoral fellowship to María Paz Luna. This author would like to thank the support and discussions with Elizabeth Troncoso. Comments to text by Prof. Yrjö Roos are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Paz Luna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, M.P., Aguilera, J.M. Kinetics of Colour Development of Molten Glucose, Fructose and Sucrose at High Temperatures. Food Biophysics 9, 61–68 (2014). https://doi.org/10.1007/s11483-013-9317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9317-0

Keywords

Navigation