Food Biophysics

, Volume 8, Issue 3, pp 170–176 | Cite as

Analysis of Bulk and Hydration Water During Thermal Lysozyme Denaturation Using Raman Scattering

  • Giuseppe Bellavia
  • Laurent Paccou
  • Samira Achir
  • Yannick Guinet
  • Jürgen Siepmann
  • Alain Hédoux


We describe a method for analyzing protein hydration by Raman spectroscopy on the model protein lysozyme. The analysis of the protein hydration shell is made possible by dissolving the protein in D2O, providing via isotopic exchange the uncoupled O – H stretching spectrum of water molecules early bound to the protein, which are thereafter spread into the solvent. The spectrum of the hydration water can be obtained by subtracting the spectrum of the contribution of D2O from that of the aqueous lysozyme solution in the intramolecular O – D stretching vibrations region (2,200–2,800 cm−1). Raman investigations were simultaneously carried out in the amide I region (1,500–1,800 cm−1) and in the O – D/H stretching spectrum (3,200–3,800 cm−1) during thermal denaturation of lysozyme, to analyze structural changes of the protein in relation to the physical properties of hydration water. It was found that the H-bond network of hydration water is slightly distorted compared to the bulk water at room temperature, with a loss of the tetrahedral local order. The difference between hydration and bulk water is significantly enhanced at T = 90 °C in the denaturated state of the protein. The quantification of water molecules in direct interaction with the protein provides the temperature dependence of the solvent-accessible surface area during the denaturation process. Both kinds of information on hydration water and protein structure lead to a detailed description and overall understanding of the mechanism of protein denaturation.


Raman spectroscopy Hydration water Uncoupled OH stretch Dilute DHO solution Thermal denaturation Lysozyme 



This work was supported by the ANR (Agence Nationale de la Recherche) through the BIOSTAB project (“Physique Chimie du Vivant” program), by FEDER and Nord-Pas de Calais region.


  1. 1.
    W. Kauzmann, Adv. Protein Chem. 14, 1 (1959)CrossRefGoogle Scholar
  2. 2.
    G. Careri, Collective Effects in Hydrated Proteins, in Hydration Processes in Biology: Theoretical and Experimental Approaches, ed. by M.-C. Bellissent-Funel (Ios Press, Amsterdam, 1999)Google Scholar
  3. 3.
    S. Dellerue, M.-C. Bellissent-Funel, Chem. Phys. 258, 315 (2000)CrossRefGoogle Scholar
  4. 4.
    M. Tarek, D.J. Tobias, Biophys. J. 79, 3244 (2000)CrossRefGoogle Scholar
  5. 5.
    K. Modig, E. Liepinsh, G. Otting, B.J. Halle, Am. Chem. Soc. 126, 102 (2004)CrossRefGoogle Scholar
  6. 6.
    C. Mattea, J. Qvist, B. Halle, Biophys. J. 95, 2951 (2008)CrossRefGoogle Scholar
  7. 7.
    D.I. Svergun, S. Richard, M.H.J. Koch, Z. Sayers, S. Kuprin, G. Zaccai, Proc. Natl. Acad. Sci. USA 95, 2267 (1998)CrossRefGoogle Scholar
  8. 8.
    N.Q. Vinh, S.J. Allen, K.W.J. Plaxco, Am. Chem. Soc. 133, 8942 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Schroder, T. Rudas, S. Boresch, O.J. Steinhauser, Chem. Phys. 124, 234907 (2006)Google Scholar
  10. 10.
    A. Oleinikova, N. Smolin, I. Brovchenko, Biophys. J. 93, 2986 (2007)CrossRefGoogle Scholar
  11. 11.
    A.R. Bizzari, S. Cannistraro, Phys. Rev. E 53, R3040 (1996)CrossRefGoogle Scholar
  12. 12.
    F.M. Richards, Ann. Rev. Biophys. Bioeng. 6, 151 (1977)CrossRefGoogle Scholar
  13. 13.
    C. Bon, A.J. Dianoux, M. Ferrand, M.S. Lehmann, Biophys. J. 83, 1578 (2002)CrossRefGoogle Scholar
  14. 14.
    M.-C.J. Bellissent-Funel, Mol. Liq. 84, 39 (2000)CrossRefGoogle Scholar
  15. 15.
    B. Bagchi, Chem. Rev. 105, 3197 (2005)CrossRefGoogle Scholar
  16. 16.
    S.N. Timasheff, PNAS 99, 9721–9726 (2002)CrossRefGoogle Scholar
  17. 17.
    T. Arakawa, S.N. Timasheff, Biochemistry 21, 6536–6544 (1982)CrossRefGoogle Scholar
  18. 18.
    R.W. Williams, A.K.J. Dunker, Mol. Biol. 152, 783 (1981)CrossRefGoogle Scholar
  19. 19.
    W.K. Surewicz, H.H. Mantsch, D. Chapman, Biochemistry 32, 389 (1993)CrossRefGoogle Scholar
  20. 20.
    R. Ionov, A. Hédoux, Y. Guinet, P. Bordat, A. Lerbret, F. Affouard, D. Prevost, M. Descamps, J. Non-Cryst. Solids. 2006.Google Scholar
  21. 21.
    A. Hédoux, Y. Guinet, L.J. Paccou, Phys. Chem. B 115, 6740 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Hedoux, J.F. Willart, L. Paccou, Y. Guinet, F. Affouard, A. Lerbret, M.J. Descamps, Phys. Chem. B 113, 6119 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Hédoux, R. Ionov, J.F. Willart, A. Lerbret, F. Affouard, Y. Guinet, M. Descamps, D. Prevost, L. Paccou, F. Danède, J. Chem. Phys. 124, 14703 (2006)CrossRefGoogle Scholar
  24. 24.
    J.-A. Seo, A. Hedoux, Y. Guinet, L. Paccou, F. Affouard, A. Lerbret, M. Descamps, J. Phys. Chem. B114, 6675 (2010)Google Scholar
  25. 25.
    P. Sassi, G. Onori, A. Giugliarelli, M. Paolantoni, S. Cinelli, A.J. Morresi, Mol. Liq. 159, 112 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Fu, S. Villette, S. Petoud, F. Fernandez-Alonzo, M.-L.J. Saboungi, Phys. Chem. B 115, 1881 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Hédoux, S. Krenzlin, L. Paccou, Y. Guinet, M.P. Flament, J. Siepmann, Phys. Chem. Chem. Phys. 12, 13189 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Lerbret, P. Bordat, F. Affouard, Y. Guinet, A. Hedoux, L. Paccou, D. Prevost, M. Descamps, Carbohydr. Res. 340, 881 (2005)CrossRefGoogle Scholar
  29. 29.
    G. D’Arrigo, G. Maisano, F. Mallamace, P. Migliardo, F.J. Wanderlingh, Chem. Phys. 75, 4264 (1981)Google Scholar
  30. 30.
    G.E.J. Walrafen, Chem. Phys. 47, 114 (1967)Google Scholar
  31. 31.
    J.R. Scherer, M.K. Go, S.J. Kint, Phys. Chem. 78, 1304 (1974)CrossRefGoogle Scholar
  32. 32.
    T.T. Wall, D.F.J. Hornig, Chem. Phys. 43, 2079 (1965)Google Scholar
  33. 33.
    W.F. Murphy, H.J.J. Bernstein, Phys. Chem. 76, 1147 (1972)CrossRefGoogle Scholar
  34. 34.
    A. Hedoux, F. Affouard, M. Descamps, Y. Guinet, L. Paccou, Phys.: Condens. Matter 19 (2007). 8 pGoogle Scholar
  35. 35.
    K. Kuwajima, Proteins 6, 87 (1989)CrossRefGoogle Scholar
  36. 36.
    J. Baum, C.M. Dobson, P.A. Evans, C. Hanley, Biochemistry 28, 7 (1989)CrossRefGoogle Scholar
  37. 37.
    K. Masaki, R. Masuda, K. Takase, K. Kawano, K. Nitta, Protein Eng. 13, 1 (2000)CrossRefGoogle Scholar
  38. 38.
    P.L.J. Privalov, Mol. Biol. 258, 707 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giuseppe Bellavia
    • 1
  • Laurent Paccou
    • 1
  • Samira Achir
    • 1
  • Yannick Guinet
    • 1
  • Jürgen Siepmann
    • 2
  • Alain Hédoux
    • 1
  1. 1.Unité Matériaux Et Transformations, UMR CNRS 8207Université Lille Nord de France, USTLVilleneuve d’AscqFrance
  2. 2.College of Pharmacy, INSERM U 1008University of LilleLilleFrance

Personalised recommendations