Advertisement

Food Biophysics

, Volume 8, Issue 4, pp 233–239 | Cite as

Shear Viscosity Investigation on Mango Juice with High Frequency Longitudinal Ultrasonic Waves and Rotational Viscosimetry

  • Didier LauxEmail author
  • Marc Valente
  • Jean-Yves Ferrandis
  • Najat Talha
  • Olivier Gibert
  • Alexia Prades
ORIGINAL ARTICLE

Abstract

Ultrasonic velocity and attenuation measurements were performed on mango juices at 25 MHz in order to estimate longitudinal viscosity. Juices were extracted from fruits, removed periodically from fruit batches undergoing ripening for 3 weeks under controlled conditions. The correlation between longitudinal viscosity and apparent dynamic shear viscosity, obtained from flow tests, showed that up to 12–13 wt.% of Soluble Solids Content (SSC), the juices presented a Newtonian behavior. In this case the relation between longitudinal viscosity measured by ultrasound and shear viscosity measured by flow tests was very simple leading to the conclusion that ultrasound could replace rotating viscosimeters for specific applications. Over this limit, the results were also clearly correlated but the correlation depended on the shear rate because of the shear thinning behavior of the juices certainly due to soluble pectins. The use of longitudinal ultrasonic waves as a tool for viscosity determination on large batches of samples is discussed at the end of this communication.

Keywords

Ultrasound Mango juice Viscosity Soluble Solids Content Shear Thinning 

Notes

Acknowledgments

We sincerely acknowledge P. Menut from IATE laboratory (UMR CNRS 1208) for his useful help concerning complementary shear viscosity evaluations with Ostwald viscosimeter which are not presented in this communication.

References

  1. 1.
    R. Saggin, J.N. Coupland, Food Res. Int. 34, 865–860 (2001)Google Scholar
  2. 2.
    R. Saggin, J.N. Coupland, Food Res. Int. 35, 999–1005 (2002)Google Scholar
  3. 3.
    R. Saggin, J.N. Coupland, J. Food Eng. 65, 49–53 (2004)Google Scholar
  4. 4.
    H. Sigfusson, G.R. Ziegler, J.N. Coupland, J. Food Eng. 62, 263–269 (2004)Google Scholar
  5. 5.
    C. Garbolino, G.R. Ziegler, J.N. Coupland, J. Am. Oil Chem. Soc. 77, 157–162 (2000)Google Scholar
  6. 6.
    D.J. McClements, S. Gunasekaran, Crit Rev Food Sci Nutr. 37, 1–46 (1997)Google Scholar
  7. 7.
    A. Kulmyrzaev, D.J. McClements, J. Food Eng. 45, 219–224 (2000)Google Scholar
  8. 8.
    M.J.W. Povey, T.J. Mason, Ultrasound in Food Processing. (Blackie Academic & Professional, 1998)Google Scholar
  9. 9.
    T.S. Awad, H.A. Moharram, O.E. Shaltout, D. Asker, M.M. Youssef, Food Res. Int. 48, 410–427 (2012)Google Scholar
  10. 10.
    A.S. Dukhin, P.J. Goetz, J. Chem. Phys. 130, 1–13 (2009). doi: 10.1063/1.3095471 Google Scholar
  11. 11.
    N.I. Contreras, P. Fairley, D.J. Mc Clements, M.J.W. Povey, Int. J. Food Sci. Technol. 27, 515–529 (1992)Google Scholar
  12. 12.
    F.J. Kuo, C.T. Sheng, C.H. Tinf, J. Food Eng. 86, 84–90 (2008)Google Scholar
  13. 13.
    A. Mizrach, Ultrasonics 38, 717–722 (2000)Google Scholar
  14. 14.
    A. Mizrach, Postharvest Biol. Technol. 48, 315–330 (2008)Google Scholar
  15. 15.
    N.I. Singh, W.E. Eipeson, J. Texture Stud. 31, 287–295 (2000)Google Scholar
  16. 16.
    S.S. Bedi, K. Jindal, K. Kaur, J. Pure. Appl. Ultrason 26, 91–94 (2004)Google Scholar
  17. 17.
    M.S. Greenwood, J.D. Adamson, L.J. Bond, Ultrasonics 44, 1031–1036 (2006)Google Scholar
  18. 18.
    M. Valente, D. Laux, A. Prades, CIGR-AgEng2012. 8–12 July 2012. Valencia, Spain. http://cigr.ageng2012.org.
  19. 19.
    D. Laux, G. Levêque, V. Cereser Camara, Ultrasonics 49, 159–161 (2009)Google Scholar
  20. 20.
    J.R. Allegra, S.A. Hawley, J. Acoust. Soc. Am. 51, 1545–1564 (1972)Google Scholar
  21. 21.
    J.A. Matheson, Molecular Acoustics. (Wiley Interscience, 1971), 5–18Google Scholar
  22. 22.
    G. Lévêque, E. Rosenkrantz, D. Laux, Meas. Sci. Technol. 18, 3458–3462 (2007)Google Scholar
  23. 23.
    T.A. Litovitz, J. Acoust. Soc. Am. 23, 75–79 (1951)Google Scholar
  24. 24.
    T.A. Litovitz, T. Lyon, L. Peselnick, J. Acoust. Soc. Am. 26, 566–576 (1954)Google Scholar
  25. 25.
    T.A. Litovitz, J. Acoust. Soc. Am. 30, 210–214 (1958)Google Scholar
  26. 26.
    R. Piccirelli, T.A. Litovitz, J. Acoust. Soc. Am. 29, 1009–1020 (1957)Google Scholar
  27. 27.
    A. Briggs, O. Kolosov, Acoustic Microscopy, 2nd edn. (Oxford University Press, 2012), pp. 74–99Google Scholar
  28. 28.
    D.R. Lide, CRC Handbook of Chemistry and Physics. (CRC Press, 2003), p. 1311Google Scholar
  29. 29.
    V.R.N. Telis, J. Telis-Romero, H.B. Mazzotti, A.L. Gabas, Int. J. Food Properties 10, 185–195 (2007)Google Scholar
  30. 30.
    M. Valente, D. Laux, A. Prades, J. Food Eng. 116, 57–64 (2013)Google Scholar
  31. 31.
    H.M. Yashoda, T.N Prabha, R.N. Tharanathan, J. Sci Food Agric. 86, 713–721 (2006)Google Scholar
  32. 32.
    C.W. Macosko, Rheology, Principles, Measurements and Applications. (Wiley-VCH, 1994), p. 141Google Scholar
  33. 33.
    R. Reboul, C. Geserick, M. Pabst, B. Frey, D. Wittmann, U. Lütz-Meindl, R. Léonard, R. Tenhaken, J. Biol. Chem. 286, 39982–39992 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Didier Laux
    • 1
    Email author
  • Marc Valente
    • 2
  • Jean-Yves Ferrandis
    • 1
  • Najat Talha
    • 2
  • Olivier Gibert
    • 2
  • Alexia Prades
    • 2
  1. 1.Institut d’Electronique du Sud, UMR 5214Université Montpellier II / CNRSMontpellierFrance
  2. 2.CIRAD, UMR QualisudMontpellierFrance

Personalised recommendations