Skip to main content
Log in

Effects of Acidification, Sodium Chloride, and Moisture Levels on Wheat Dough: I. Modeling of Rheological and Microstructural Properties

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The rheological attributes of polymers as wheat dough are strongly related to its microstructure. To quantify dough protein microstructure confocal laser scanning microscopy combined with image analysis was used. The effect of three experimental factors pH (addition of lactic acid and sodium hydroxide), water addition, and sodium chloride (NaCl) addition on empirical and fundamental rheological properties as well as microstructural protein properties were studied and modeled by applying a response surface methodology. The obtained models revealed high correlations between the experimental factors and the complex shear modulus (R 2 = 0.97), dough resistance (Rmax k; R 2 = 0.91) and stickiness (R 2 = 0.93). Furthermore it was possible to determine microstructural attributes as the area fraction (R 2 = 0.88) and Feret’s diameter (R 2 = 0.86) as a function of pH, water and NaCl addition. Especially measures of Rk max revealed highly significant correlations with the protein microstructure as the branching index (r = 0.79).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AS :

Work of adhesion

AF :

Area fraction

ØA:

Average size

BI:

Branching index

BU:

Brabender units

C:

Circularity

CLSM:

Confocal laser scanning microscopy

CS :

Dough cohesiveness

DS :

Stickiness

DF :

Feret’s diameter

EK :

Dough extensibility

FD:

Fractal dimension

G’:

Shear storage modulus

G”:

Shear loss modulus

|G*|:

Complex shear modulus

Jel :

Relative elastic part of Jmax

Jmax :

Maximum creep compliance

Jr :

Creep recovery compliance

NaCl:

Sodium chloride

P:

Perimeter

ΣP:

Particle count

PH :

pH

Rk max :

Dough resistance

RSM:

Response surface methodology

R2 :

Adjusted square correlation coefficient of the fitting model

S :

Sodium chloride

tan δ:

Loss factor

W :

Water

References

  1. H. Larsson, A. C. Eliasson, Phase separation of wheat flour dough studied by ultracentrifugation and stress relaxation. I: Influence of water content. (American Association of Cereal Chemists, St. Paul, MN, ETATS-UNIS, 1996)

  2. J. Rouillé, G. Della Valle, J. Lefebvre, E. Sliwinski, T. vanVliet, J. Cereal Sci. 42(1), 45–57 (2005)

    Article  Google Scholar 

  3. B.J. Dobraszczyk, in Encyclopedia of grain science, ed. by W. Colin (Elsevier, Oxford, 2004), pp. 400–416

    Chapter  Google Scholar 

  4. T. Georgopoulos, H. Larsson, A.-C. Eliasson, Food Hydrocolloids 18(1), 143–151 (2004)

    Article  CAS  Google Scholar 

  5. C. Collar, C. Bollaín, Eur. Food Res. Technol. 220(3), 372–379 (2005)

    Article  CAS  Google Scholar 

  6. F. Van Bockstaele, I. De Leyn, M. Eeckhout, K. Dewettinck, Cereal Chem. 85(6), 753–761 (2008)

    Article  Google Scholar 

  7. M. Beck, M. Jekle, T. Becker, Impact of sodium chloride on wheat flour dough for yeast-leavened products. II. Baking quality parameter and their relationship. J. Sci. Food Agr. 92, 299–306 (2012)

    Google Scholar 

  8. Y. Song, Q. Zheng, Trends Food Sci. Technol. 18, 132–138 (2007)

    Article  CAS  Google Scholar 

  9. C.M. Rosell, E. Santos, C. Collar, Eur. Food Res. Technol. 223(3), 333–340 (2006)

    Article  CAS  Google Scholar 

  10. M. Jekle, T. Becker, Food Res. Int. 44(4), 984–991 (2011)

    Article  Google Scholar 

  11. K. Srikaeo, J.E. Furst, J.F. Ashton, R.W. Hosken, LWT - Food Sci. Tech. 39(5), 528–533 (2006)

    Article  CAS  Google Scholar 

  12. A.D. Roman-Gutierrez, S. Guilbert, B. Cuq, Lebensm. Wiss. Technol. 35(8), 730–740 (2002)

    CAS  Google Scholar 

  13. H.-J. Kim, N. Morita, S.-H. Lee, K.-D. Moon, Food Res. Int. 36(4), 387–397 (2003)

    Article  Google Scholar 

  14. T. Parkkonen, R. Heinonen, K. Autio, Lebensm. Wiss. Technol. 30(7), 743–747 (1997)

    CAS  Google Scholar 

  15. K. Autio, M. Salmenkallio-Marttila, Lebensm. Wiss. Technol. 34(1), 18–22 (2001)

    CAS  Google Scholar 

  16. M. Fabritius, F. Gates, H. Salovaara, K. Autio, Lebensm. Wiss. Technol. 30(4), 367–372 (1997)

    CAS  Google Scholar 

  17. W. Li, B.J. Dobraszczyk, P.J. Wilde, J. Cereal Sci. 39(3), 403–411 (2004)

    Article  CAS  Google Scholar 

  18. T.J. Schober, R.A. Moreau, S.R. Bean, D.L. Boyle, J. Cereal Sci. 52(3), 417–425 (2010)

    Article  CAS  Google Scholar 

  19. M. Beck, M. Jekle, T. Becker, Impact of sodium chloride on wheat flour dough for yeast-leavened products. I. Rheological parameters. J. Sci. Food Agr. 92, 585–592 (2012)

    Google Scholar 

  20. M. Zarnkow, A. Mauch, W. Back, E.K. Arendt, S. Kreisz, J. Inst. Brew. 113(4), 335–364 (2007)

    Google Scholar 

  21. M. Beck, M. Jekle, T. Becker, Baking + Biscuit 5, 78–81 (2009)

    Google Scholar 

  22. M. Beck, M. Jekle, P.L. Selmair, P. Koehler, T. Becker, J. Cereal Sci. 54(1), 29–36 (2011)

    Article  CAS  Google Scholar 

  23. T. Nagano, E. Tamaki, T. Funami, Carbohydr. Polym. 72(1), 95–101 (2008)

    Article  CAS  Google Scholar 

  24. L. Lee, P.K.W. Ng, J.H. Whallon, J.F. Steffe, Cereal Chem. 78(4), 447–452 (2001)

    Article  CAS  Google Scholar 

  25. S.H. Peighambardoust, A.J. van der Goot, T. van Vliet, R.J. Hamer, R.M. Boom, J. Cereal Sci. 43(2), 183–197 (2006)

    Article  CAS  Google Scholar 

  26. C. Collar, P. Andreu, J.C. Martínez, E. Armero, Food Hydrocolloids 13(6), 467–475 (1999)

    Article  CAS  Google Scholar 

  27. S.K. Ghodke, L. Ananthanarayan, L. Rodrigues, Food Chem. 112(4), 1010–1015 (2009)

    Article  CAS  Google Scholar 

  28. L. Flander, M. Salmenkallio-Marttila, T. Suortti, K. Autio, LWT - Food Sci. Tech. 40(5), 860–870 (2007)

    Article  CAS  Google Scholar 

  29. R.L. Mason, R.F. Gunst, J.L. Hess, Statistical design and analysis of experiments with application to engineering and science (John Wiley and Sons, New York, 1989)

    Google Scholar 

  30. M. Seguchi, M. Hayashi, H. Matsumoto, Cereal Chem. 74(2), 129–134 (1997)

    Article  CAS  Google Scholar 

  31. A. Farahnaky, S.E. Hill, Journal of Texture Studies 38, 499–510 (2007)

    Article  Google Scholar 

  32. H. Larsson, Cereal Chem. 79(4), 544–545 (2002)

    Article  CAS  Google Scholar 

  33. K. Wehrle, H. Grau, E.K. Arendt, Cereal Chem. 74(6), 739–744 (1997)

    Article  CAS  Google Scholar 

  34. E.J. Lynch, F. Dal Bello, E.M. Sheehan, K.D. Cashman, E.K. Arendt, Food Res. Int. 42(7), 885–891 (2009)

    Article  CAS  Google Scholar 

  35. T.J. Schober, P. Dockery, E.K. Arendt, Eur. Food Res. Technol. 217(3), 235–243 (2003)

    Article  CAS  Google Scholar 

  36. K. Mani, C. Tragardh, A.C. Eliasson, L. Lindahl, J. Food Sci. 57(5), 1198–1200 (1992)

    Article  Google Scholar 

  37. ICC, in ICC Standard 115 (Brabender Farinograph) (Moritz Schäfer, Detmold, 1994), Vol. 8

  38. H.-M. Anger, Brautechnische Analysenmethoden. Band Rohstoffe. (Selbstverlag der MEBAK, 2006)

  39. H. Mirsaeedghazi, Z. Emam-Djomeh, S.M. Mousavi, Int. J. Agric. Biol. 10, 112–119 (2008)

    Google Scholar 

  40. H. Grausgruber, G. Schoggl, P. Ruckenbauer, Eur. Food Res. Technol. 214(1), 79–82 (2002)

    Article  CAS  Google Scholar 

  41. L.-K. Huang, M.-J.J. Wang, Pattern Recogn. 28(1), 41–51 (1995)

    Article  Google Scholar 

  42. N. Sarkar, B.B. Chaudhuri, Pattern Recogn. 25(9), 1035–1041 (1992)

    Article  Google Scholar 

  43. H. Singh, F. MacRitchie, J. Cereal Sci. 33(3), 231–243 (2001)

    Article  CAS  Google Scholar 

  44. M. Beck, M. Jekle, S. Hofmann, T. Becker, Eur. Food Res. Technol. 229(2), 183–189 (2009)

    Article  CAS  Google Scholar 

  45. E.J.J. van Velzen, J.P.M. van Duynhoven, P. Pudney, P.L. Weegels, J.H. van der Maas, Cereal Chem. 80(4), 378–382 (2003)

    Article  Google Scholar 

  46. S.-Y. Shiau, A.-I. Yeh, J. Cereal Sci. 33(1), 27–37 (2001)

    Article  CAS  Google Scholar 

  47. M. Seguchi, M. Hayashi, H. Matsumoto, Cereal Chem. 74(4), 384–388 (1997)

    Article  CAS  Google Scholar 

  48. G.B. Fincher, B.A. Stone, Adv. Cereal Sci. Tech. 8, 207–295 (1986)

    CAS  Google Scholar 

  49. J.Y. Wu, R.C. Hoseney, J. Cereal Chem. 66(3), 182–185 (1989)

    Google Scholar 

  50. C. Thiele, S. Grassl, M. Gänzle, J. Agric. Food Chem. 52(5), 1307–1314 (2004)

    Article  CAS  Google Scholar 

  51. A. Maher Galal, C. Varriano-Marston, J.A. Johnson, Cereal Chem. 55, 683–691 (1978)

    Google Scholar 

  52. H. Chiou, C.M. Fellows, R.G. Gilbert, M.A. Fitzgerald, Carbohydr. Polym. 61(1), 61–71 (2005)

    Article  CAS  Google Scholar 

  53. J.H. Lee, J.-A. Han, S.-T. Lim, Food Hydrocolloids 23(7), 1935–1939 (2009)

    Article  CAS  Google Scholar 

  54. E.L. Sliwinski, P. Kolster, A. Prins, T. van Vliet, J. Cereal Sci. 39(2), 247–264 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research project was supported by the German Ministry of Economics and Technology (via AIF) and the FEI (Forschungskreis der Ernährungsindustrie e. V., Bonn). Project AIF 16013 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Jekle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jekle, M., Becker, T. Effects of Acidification, Sodium Chloride, and Moisture Levels on Wheat Dough: I. Modeling of Rheological and Microstructural Properties. Food Biophysics 7, 190–199 (2012). https://doi.org/10.1007/s11483-012-9257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-012-9257-0

Keywords

Navigation