Food Biophysics

, Volume 6, Issue 1, pp 152–159 | Cite as

Culinary Biophysics: on the Nature of the 6X°C Egg

  • César VegaEmail author
  • Ruben Mercadé-Prieto


Shell-on eggs cooked by immersion in water at low and constant temperatures (∼60–70 °C) yield yolks with very particular textures. Structure development in such unique cooking conditions is far from understood. The present study shows that egg yolk, despite its compositional complexity, follows typical gelation kinetics found in many globular proteins and that it can develop structure at temperatures as low as 56 °C. It follows that yolk texture is dictated by time/temperature combinations. Under isothermal, low temperature cooking conditions, the thickening and gelation kinetics of egg yolk follow Arrhenius-type kinetic relationships. The energy of activation of these processes was ∼470 kJ mol−1, which agrees well with the values reported for the denaturation and gelation of the thermally labile chicken serum albumin and immunoglobulin Y. Results are related to common foodstuffs in order to allow chefs and home cooks to achieve a priori conceived textures in egg yolks.


Egg yolk Texture Sous-vide Gastronomy Science-assisted cooking 


  1. 1.
    C. Vega, Egg yolk: A library of Textures, in The kitchen as a laboratory: science reflections inspired by the kitchen, ed. by C. Vega, J. Ubbink, E. van der Linden (Columbia University Press, New York, 2011)Google Scholar
  2. 2.
    C. Vega, J. Ubbink, Trends Food Sci. Technol. 19, 372–382 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Buay, S.K. Foong, D. Kiang, L. Kuppan, V.H. Liew, Eur. J. Phys. 27, 119–131 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Roura, P. Fort, J. Saurina, Eur. J. Phys. 21, 95–100 (2000)CrossRefGoogle Scholar
  5. 5.
    P. Gadsby (2007) Cooking for eggheads. Discover magazine. Available at:
  6. 6.
    H. This, Molecular Gastronomy: Exploring the Science of Flavor (Columbia University Press, New York, 2006)Google Scholar
  7. 7.
    K. Mann, M. Mann, Proteomics 8, 178–191 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Le Denmat, M. Anton, V. Beaumal, Food Hydrocolloids 14, 539–549 (2000)CrossRefGoogle Scholar
  9. 9.
    V. Kiosseoglou, A. Paraskevopoulou, Food Hydrocolloids 19, 527–532 (2005)CrossRefGoogle Scholar
  10. 10.
    F. Guilmineau, I. Krause, U. Kulozik, J. Agric. Food Chem. 53, 9329–9336 (2005)CrossRefGoogle Scholar
  11. 11.
    D.K. Dixon, O.J. Cotterill, J. Food Sci. 46, 981–983 (1981)CrossRefGoogle Scholar
  12. 12.
    M. Le Denmat, M. Anton, G. Gandemer, J. Food Sci. 64, 194–197 (1999)CrossRefGoogle Scholar
  13. 13.
    N. Matsudomi, K. Ito, Y. Yoshika, Biosci. Biotechnol. Biochem. 70, 836–842 (2006)CrossRefGoogle Scholar
  14. 14.
    P.F. Predki, C. Harford, P. Brar, B. Sarkar, Biochem. J. 287, 211–215 (1992)Google Scholar
  15. 15.
    C.W. Heizman, G. Muller, E. Jenny, K.J. Wilson, F. Landon, A. Olomucki, Proc. Natl Acad. Sci. USA 78, 74–77 (1981)CrossRefGoogle Scholar
  16. 16.
    C. Giancola, C. De Sena, D. Fessas, G. Graziano, G. Barone, Int. J. Biol. Macromol. 20, 193–204 (1997)CrossRefGoogle Scholar
  17. 17.
    Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, K. Takeda, J. Phys. Chem. B 112, 16585–16589 (2008)CrossRefGoogle Scholar
  18. 18.
    N. Matsudomi, D. Rector, J.E. Kinsella, Food Chem. 40, 55–69 (1991)CrossRefGoogle Scholar
  19. 19.
    A. Tobitani, S.B. RossMurphy, Macromolecules 30, 4845–4854 (1997)CrossRefGoogle Scholar
  20. 20.
    X. Cao, J. Li, X. Yang, Y. Duan, Y. Liu, C. Wang, Thermochim. Acta 467, 99–106 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Baier, J. McClements, J. Agric. Food Chem. 49, 2600–2608 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Shimizu, H. Nagashima, K. Hashimoto, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 106, 255–261 (1993)CrossRefGoogle Scholar
  23. 23.
    H.E. Indyk, J.W. Williams, H.A. Patel, Int. Dairy J. 18, 359–366 (2008)Google Scholar
  24. 24.
    A.W.P. Vermeer, W. Norde, Biophys. J. 78, 394–404 (2000)CrossRefGoogle Scholar
  25. 25.
    A.W.P. Vermeer, C.E. Giacomelli, W. Norde, Biochimica et Biophysica Acta (BBA)-General Subjects 1526, 61–69 (2001)CrossRefGoogle Scholar
  26. 26.
    D.J. Oldfield, H. Singh, M.W. Taylor, K.N. Pearce, Int. Dairy J. 8, 311–318 (1998)CrossRefGoogle Scholar
  27. 27.
    E. Lichan, A. Kummer, J.N. Losso, D.D. Kitts, S. Nakai, Food Res. Int. 28, 9–16 (1995)CrossRefGoogle Scholar
  28. 28.
    C. D. H. Williams (2010) The science of boiling an egg. Available at:
  29. 29.
    S. Stølen, J. Vedde, Kunsten å koke et egg (2010) Available at:
  30. 30.
    S.L. Polley, O.P. Snyder, P. Kotnour, Food Technol. 34, 76–91 (1980)Google Scholar
  31. 31.
    S. Almonacid, R. Simpson, A. Teixeira, J. Food Sci. 72, E508–E517 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Denys, J.G. Pieters, K. Dewettinck, J. Food Eng. 63, 281–290 (2004)CrossRefGoogle Scholar
  33. 33.
    H. Yamashita, J. Ishibashi, Y.H. Hong, M. Hirose, Biosci. Biotechnol. Biochem. 62, 593–595 (1998)CrossRefGoogle Scholar
  34. 34.
    M.A.M. Hoffmann, J.C. van Miltenburg, P.J.J.M. Van Mil, Thermochim. Acta 306, 45–49 (1997)CrossRefGoogle Scholar
  35. 35.
    C. Le Bon, T. Nicolai, D. Durand, Macromolecules 32, 6120–6127 (1999)CrossRefGoogle Scholar
  36. 36.
    E. Doi, Trends Food Sci. Technol. 4, 1–5 (1993)CrossRefGoogle Scholar
  37. 37.
    A.H. Clark, G.M. Kavanagh, S.B. Ross-Murphy, Food Hydrocolloids 15, 383–400 (2001)CrossRefGoogle Scholar
  38. 38.
    W.S. Gosal, S.B. Ross-Murphy, Curr. Opin. Colloid Interface Sci. 5, 188–194 (2000)CrossRefGoogle Scholar
  39. 39.
    F. Cordobes, P. Partal, A. Guerrero, Rheologica Acta 43, 184–195 (2004)CrossRefGoogle Scholar
  40. 40.
    M. Anton, M. Le Denmat, V. Beaumal, P. Pilet, Colloids Surf., B 21, 137–147 (2001)CrossRefGoogle Scholar
  41. 41.
    F. Chambon, H.H. Winter, J. Rheol. 31, 683–697 (1987)CrossRefGoogle Scholar
  42. 42.
    N.R. Pollen, C. Daubert, P. Prabhasankar, M. Drake, M.L. Gumpertz, J. Texture Stud. 35, 643–657 (2004)CrossRefGoogle Scholar
  43. 43.
    A. Guerrero, J. Carmona, I. Martinez, F. Cordobes, P. Partal, Rheologica Acta 43, 539–549 (2004)CrossRefGoogle Scholar
  44. 44.
    T. Tsutsui, J. Food Sci. 53, 1103–1106 (1988)CrossRefGoogle Scholar
  45. 45.
    R. Nakamura, T. Fukano, M. Taniguchi, J. Food Sci. 47, 1449–1453 (1982)CrossRefGoogle Scholar
  46. 46.
    J.M. Aguilar, F. Cordobes, A. Jerez, A. Guerrero, Rheologica Acta 46, 731–740 (2007)CrossRefGoogle Scholar
  47. 47.
    F. Cordobes, J.A. Carmona, I. Martinez, P. Partal, A. Guerrero, Gums and Stabilizers for the Food Industry 12 (Springer, Berlin, 2004)Google Scholar
  48. 48.
    S. Jayaraman, D. Gantz, O. Gursky, Biochemistry 44, 3965–3971 (2005)CrossRefGoogle Scholar
  49. 49.
    F. Speroni, M.C. Puppo, N. Chapleau, M. de Lamballerie, O. Castellani, M.C. Anon, M. Anton, J. Agric. Food Chem. 53, 5719–5725 (2005)CrossRefGoogle Scholar
  50. 50.
    P. Barham, L.H. Skibsted, W.L.P. Bredie, M. Bom Frøst, P. Møller, J. Risbo, P. Snitjær, L.M. Mortensen, Chem. Rev. 110, 2313–2365 (2010)CrossRefGoogle Scholar
  51. 51.
    J. Unsworth, F.J. Duarte, Am. J. Phys. 47, 981–983 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mars BotanicalRockvilleUSA
  2. 2.Department of Chemical EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations