Food Biophysics

, Volume 4, Issue 4, pp 304–311 | Cite as

Positive Correlation Between the Expression of inlA and inlB Genes of Listeria monocytogenes and Its Attachment Strength on Glass Surface

Original Article


Previous research involving internalin A (inlA) and internalin B (inlB) single- and double-knockout mutants of Listeria monocytogenes has suggested the involvement of two surface proteins, InlA and InlB, in the adherence of the cells to a glass surface. This phenomenon was further investigated with a larger number (n = 27) of L. monocytogenes wild-type strains that were isolated from catfish processing plants and catfish fillets, in addition to internal controls, one ATCC 7644 strain, and L. monocytogenes EGDe strain. Of the wild-type strains, three were shown to produce truncated forms of InlA protein. A blot succession method was used to measure the ease of detachment of sessile L. monocytogenes from a glass surface after attachment at 4 °C for 8 h. Real-time reverse transcriptase polymerase chain reaction was used to quantitate mRNA levels of inlA and inlB in L. monocytogenes strains after the cells were incubated at 4 °C for 8 h. An inverse relationship between the ease of cell removal from glass surface and the relative inlA and inlB mRNA levels with R 2 value of 0.664 and 0.431, respectively, was observed. This suggests that the attachment strength of L. monocytogenes on glass surface is positively correlated with inlA and inlB expression. There were no differences (p > 0.05) in attachment strength among serotypes. These results suggest that L. monocytogenes InlA and InlB proteins play a role in adherence to a glass surface at low temperature, and the attachment ability is independent of serotype.


Listeria monocytogenes Attachment strength Internalin A Internalin B Real-time RT-PCR 



Authors would like to thank Dr. Jeff Wilkinson for allowing us to use the Lightcycler® 2.0. This paper was approved for publication as Journal Article No. J-11634 of the Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University. This work was supported in part by MAFES Project Numbers MIS-371272 and 401090 and by USDA-ARS Grant No. 58-0790-5-137 and by a grant from MAFES SRI.


  1. 1.
    J. McLauchlin, Epidermiol. Infect. 104, 181–189 (1990)CrossRefGoogle Scholar
  2. 2.
    J. McLauchlin, Epidermiol. Infect. 104, 191–201 (1990)CrossRefGoogle Scholar
  3. 3.
    A. Schuchat, B. Swaminathan, C.V. Broome, Clin. Microbiol. Rev. 4, 169–183 (1991)Google Scholar
  4. 4.
    H. Hof, FEMS Immuno. Med. Microbiol. 35, 199–202 (2003)CrossRefGoogle Scholar
  5. 5.
    J. Weis, H.P. Seeliger, Appl. Microbiol. 30, 29–32 (1975)Google Scholar
  6. 6.
    M.T. Destro, M.F. Leitao, J.M. Farber, Appl. Environ. Microbiol. 62, 705–711 (1996)Google Scholar
  7. 7.
    K.K. Nightingale, Y.H. Schukken, C.R. Nightingale, E.D. Fortes, A.J. Ho, Z. Her, Y.T. Grohn, P.L. McDonough, M. Wiedmann, Appl. Environ. Microbiol. 70, 4458–4467 (2004)CrossRefGoogle Scholar
  8. 8.
    C.H. Hansen, B.F. Vogel, L. Gram, J. Food Prot. 69, 2113–2122 (2006)Google Scholar
  9. 9.
    Y. Hu, K. Gall, A. Ho, R. Ivanek, Y.T. Grohn, M. Wiedmann, J. Food Prot. 69, 2123–2133 (2006)Google Scholar
  10. 10.
    C.H. Chou, J.L. Silva, C. Wang, J. Food Prot. 69, 815–819 (2006)Google Scholar
  11. 11.
    S.M. George, B.M. Lund, T.F. Brocklehurst, Lett. Appl. Microbiol. 6, 153–156 (1988)CrossRefGoogle Scholar
  12. 12.
    M. Cole, M. Jones, C. Holyoak, J. Appl, Bacteriol. 69, 63–72 (1990)Google Scholar
  13. 13.
    T. Jemmi, S.I. Pak, M.D. Salman, Prev. Vet. Med. 54, 25–36 (2002)CrossRefGoogle Scholar
  14. 14.
    A.A. Mafu, D. Roy, J. Goulet, P. Magny, J. Food Prot. 53, 742–746 (1990)Google Scholar
  15. 15.
    L.M. Smoot, M.D. Pierson, J. Food Prot. 61, 1286–1292 (1998)Google Scholar
  16. 16.
    M.W. LeChevallier, C.D. Cawthon, R.G. Lee, Appl. Environ. Microbiol. 54, 649–654 (1988)Google Scholar
  17. 17.
    J.T. Holah, C. Higgs, S. Robinson, D. Worthington, H. Spenceley, Lett. Appl. Microbiol. 11, 255–260 (1990)CrossRefGoogle Scholar
  18. 18.
    C. Arizcun, C. Vasseur, J.C. Labadie, J. Food Prot. 61, 731–734 (1997)Google Scholar
  19. 19.
    A.B. Ronner, A.C.L. Wong, J. Food Prot. 56, 750–758 (1993)Google Scholar
  20. 20.
    T.M. Mosteller, J.R. Bishop, J. Food Prot. 56, 34–41 (1993)Google Scholar
  21. 21.
    J.T. Walker, J. Rogers, C.W. Keevil, Biofouling 8, 47–53 (1994)CrossRefGoogle Scholar
  22. 22.
    S.H. Flint, J.D. Brooks, P.J. Bremer, J. Appl, Microbiol. 83, 508–517 (1997)Google Scholar
  23. 23.
    S.G. Parkar, S.H. Flint, J.S. Palmer, J.D. Brooks, J. Appl, Microbiol. 90, 901–908 (2001)Google Scholar
  24. 24.
    T.-K. Kim, J.L. Silva, J. Rapid Meth, Auto. 13, 127–133 (2005)Google Scholar
  25. 25.
    H. Bierne, P. Cossart, Microbiol. Mol. Biol. Rev. 71, 3357–3367 (2007)CrossRefGoogle Scholar
  26. 26.
    B.Y. Chen, T.J. Kim, Y.-S. Jung, J.L. Silva, Food Biophys. 3, 329–332 (2008)CrossRefGoogle Scholar
  27. 27.
    S.V. Bush, C.W. Donnelly, Appl. Environ. Microbiol. 58, 14–20 (1992)Google Scholar
  28. 28.
    A. Bubert, I. Hein, M. Rauch, A. Lehner, B. Yoon, W. Goebel, M. Wagner, Appl. Environ. Microbiol. 65, 4688–4692 (1999)Google Scholar
  29. 29.
    A.A. Mafu, D. Roy, J. Goulet, L. Savoie, Appl. Environ. Microbiol. 57, 1969–1973 (1991)Google Scholar
  30. 30.
    P. Teixeira, J. Lima, J. Azeredo, R. Oliveira, Int. J. Food Sci. Technol. 43, 1239–1244 (2008)CrossRefGoogle Scholar
  31. 31.
    P.J. Eginton, H. Gibson, J. Holah, P.S. Handley, P. Gilbert, J. Ind, Microbiol. 15, 305–310 (1995)Google Scholar
  32. 32.
    G. Midelet, A. Kobilinsky, B. Carpentier, Appl. Environ. Microbiol. 72, 2313–2321 (2006)CrossRefGoogle Scholar
  33. 33.
    U.K. Laemmli, Nature 227, 680–685 (1970)CrossRefGoogle Scholar
  34. 34.
    Y.-S. Jung, Y.-M. Kwon, Curr. Microbiol. 57, 593–597 (2008)CrossRefGoogle Scholar
  35. 35.
    B.-S. Park, Y.-M. Kwon, R. Pyla, J.A. Boyle, Y.-S. Jung, FEMS Microbiol. Lett. 273, 244–252 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Werbrouck, K. Grijspeerdt, N. Botteldoorn, E.V. Pamel, N. Rijpens, J.V. Damme, M. Uyttendaele, L. Herman, E.V. Coillie, Appl. Environ. Microbiol. 72, 3862–3871 (2006)CrossRefGoogle Scholar
  37. 37.
    M.W. Pfaffl, Nucleic Acids Res. 29, 2002–2007 (2001)CrossRefGoogle Scholar
  38. 38.
    SAS Institute, SAS Institute, Cary (2001)Google Scholar
  39. 39.
    K.K. Nightingale, K. Windham, K.E. Martin, M. Yeung, M. Wiedmann, Appl. Environ. Microbiol. 71, 8764–8772 (2005)CrossRefGoogle Scholar
  40. 40.
    K.K. Nightingale, R.A. Ivy, A.J. Ho, E.D. Fortes, B.L. Njaa, R.M. Peters, M. Wiedmann, Appl. Environ. Microbiol. 74, 6570–6583 (2008)CrossRefGoogle Scholar
  41. 41.
    T.J. Kim, Y.-S. Jung, J.L. Silva, S. Danviriyakul, Food Biotechnol. 21, 161–168 (2007)CrossRefGoogle Scholar
  42. 42.
    P.J. Eginton, J. Holah, D.G. Allison, P.S. Handley, P. Gilbert, Lett. Appl. Microbiol. 27, 101–105 (1998)CrossRefGoogle Scholar
  43. 43.
    P. McGann, R. Ivanek, M. Wiedmann, K.J. Boor, Appl. Environ. Microbiol. 73, 2806–2814 (2007)CrossRefGoogle Scholar
  44. 44.
    A. Lingnau, E. Domann, M. Hudel, M. Bock, T. Nichterlein, J. Wehland, T. Chakraborty, Infect. Immuni. 63, 3896–3903 (1995)Google Scholar
  45. 45.
    B.G. Gellin, C.V. Broome, J. Am, Med. Assoc. 261, 1313–1320 (1989)CrossRefGoogle Scholar
  46. 46.
    H. Gorski, J.D. Palumbo, R.E. Mandrell, Appl. Environ. Microbiol. 69, 258–266 (2003)CrossRefGoogle Scholar
  47. 47.
    T.C. Ells, L.T. Hansen, Int. J. Food Microbiol. 111, 34–42 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Food Science, Nutrition and Health PromotionMississippi State UniversityMississippi StateUSA
  2. 2.Department of Biochemistry and Molecular BiologyMississippi State UniversityMississippi StateUSA

Personalised recommendations