Advertisement

Food Biophysics

, Volume 4, Issue 2, pp 126–133 | Cite as

EPR Spin-Trapping and Spin-Probing Spectroscopy in Assessing Antioxidant Properties: Example on Extracts of Catkin, Leaves, and Spiny Burs of Castanea sativa

  • Jelena Živković
  • Zoran Zeković
  • Ibrahim Mujić
  • Dejan Gođevac
  • Miloš Mojović
  • Aida Mujić
  • Ivan Spasojević
Original Article

Abstract

Electron paramagnetic resonance (EPR) spin-trapping and spin-probing techniques were applied to determine antioxidant activity of extracts of catkin, leaves, and spiny burs of Castanea sativa against physiologically relevant reactive species—superoxide and hydroxyl radical generated in simple chemical systems and hydrogen peroxide applied on erythrocytes. Efflux of K+ was used as a marker of membrane integrity. Chemical composition of extracts was analyzed using HPLC/DAD and LC/MS. Extracts showed high antioxidative capacity against superoxide but lower activity against hydroxyl radical. They protected fluidity and integrity of membranes of erythrocytes exposed to hydrogen peroxide. Levels of derivatives of ellagitannins showed positive correlation with the antioxidative activity of extracts. Therefore, ellagitannins from chestnut extracts could represent easily accessible natural antioxidants and beneficial component of human diet in pathophysiological conditions related to oxidative stress. In conclusion, EPR spectroscopy represents a valuable tool for evaluation of antioxidant activity in both hydrophilic and lipophilic media.

Keywords

EPR Ellagitannins Oxidative stress Castanea sativa Antioxidant 

References

  1. 1.
    B. Halliwell, Plant Physiol 141, 312–322 (2006). doi: 10.1104/pp.106.077073 CrossRefGoogle Scholar
  2. 2.
    J.T. Hancock, R. Desikan, R.J. Neill, Biochem Soc Trans 29, 345–350 (2001). doi: 10.1042/BST0290345 CrossRefGoogle Scholar
  3. 3.
    S.G. Rhee, Science 312, 1882–1883 (2006). doi: 10.1126/science.1130481 CrossRefGoogle Scholar
  4. 4.
    E. Crimi, L.J. Ignarro, C. Napoli, Free Radic Res 41, 1364–1375 (2007). doi: 10.1080/10715760701732830 CrossRefGoogle Scholar
  5. 5.
    W. Dröge, Physiol Rev 82, 47–95 (2002)Google Scholar
  6. 6.
    J. Bullen, E. Griffiths, H. Rogers, G. Ward, Microbes Infect 2, 409–415 (2000). doi: 10.1016/S1286-4579(00)00326-9 CrossRefGoogle Scholar
  7. 7.
    J.M. Roberts, C.A. Hubel, Lancet 354, 788–789 (1999)Google Scholar
  8. 8.
    N. Lane, J Theor Biol 225, 531–540 (2003). doi: 10.1016/S0022-5193(03)00304-7 CrossRefGoogle Scholar
  9. 9.
    C. Sanchez-Moreno, Food Sci Technol Int 8, 121–137 (2002). doi: 10.1177/1082013202008003770 CrossRefGoogle Scholar
  10. 10.
    G.W. Winston, F. Regoli, A.J.J. Dugas, J.H. Fong, K. Blanchard, Free Radic Biol Med 24, 480–493 (1998). doi: 10.1016/S0891-5849(97)00277-3 CrossRefGoogle Scholar
  11. 11.
    W.S. Waring, V. Mishra, S.R.J. Maxwell, Clin Chim Acta 338, 67–71 (2003). doi: 10.1016/j.cccn.2003.07.013 CrossRefGoogle Scholar
  12. 12.
    M. Kampa, A. Nistikaki, V. Tsaousis, N. Maliataki, G. Notas, E. Castanas, B.M.C. Clin, Pathol 2, 1–16 (2002)Google Scholar
  13. 13.
    R. Van den Berg, G.R.M.M. Haenen, H. Van den Berg, A. Bast, Food Chem 66, 511–517 (1999). doi: 10.1016/S0308-8146(99)00089-8 CrossRefGoogle Scholar
  14. 14.
    D. Gođevac, L. Vujisić, M. Mojović, A. Ignjatović, I. Spasojević, V. Vajs, Food Chem 107, 1692–1700 (2008). doi: 10.1016/j.foodchem.2007.10.017 CrossRefGoogle Scholar
  15. 15.
    E.D. Tzika, V. Papadimitriou, T.G. Sotiroudis, A. Xenakis, Food Biophys 3, 48–53 (2008). doi: 10.1007/s11483-007-9047-2 CrossRefGoogle Scholar
  16. 16.
    I. Spasojević, M. Mojović, D. Blagojević, S.D. Spasić, D.R. Jones, A. Nikolić-Kokić, M.B. Spasić, Carbohyd Res (2008). doi: 10.1016/j.carres.2008.09.025 Google Scholar
  17. 17.
    J. Živković, I. Mujić, Z. Zeković, S. Vidović, A. Mujić, J. Cent. Eur. Agric. 2, 353–362 (2008)Google Scholar
  18. 18.
    M. Polovka, J. Food Nutr Res. 45, 1–11 (2006)Google Scholar
  19. 19.
    G. Bačić, I. Spasojević, B. Šećerov, M. Mojović, Spectochim. Acta Part A 69, 1354–1366 (2008)Google Scholar
  20. 20.
    K.J.A. Davies, A.L. Goldberg, J Biol Chem 262, 8220–8226 (1987)Google Scholar
  21. 21.
    D. Galaris, G. Buffinton, P. Hochstein, E. Cadenas, in Membrane lipid oxidation, ed. by C. Vigo-Pelfrey (CRC Press, Boca Raton (FL), 1990), pp. 270–281Google Scholar
  22. 22.
    H. Einsele, M.R. Clemens, H. Remmer, Free Radic Res 1, 63–67 (1985). doi: 10.3109/10715768509056537 CrossRefGoogle Scholar
  23. 23.
    H. Watanabe, A. Kobayashi, T. Yamamoto, S. Suzuki, H. Hayashi, N. Yamazaki, Free Radic Biol Med 8, 507–514 (1990). doi: 10.1016/0891-5849(90)90150-H CrossRefGoogle Scholar
  24. 24.
    J.A. Weil, J.R. Bolton, Electron paramegnetic resonance. Elementary theory and prectical applications (Wiley, New York, 1997)Google Scholar
  25. 25.
    B. Zywicki, T. Reemtsma, M. Jekel, J Chromatogr A 970, 191–200 (2002). doi: 10.1016/S0021-9673(02)00883-X CrossRefGoogle Scholar
  26. 26.
    O.I. Aruoma, A.M. Murcia, J. Butler, B. Halliwell, J Agric Food Chem 41, 1880–1886 (1993). doi: 10.1021/jf00035a014 CrossRefGoogle Scholar
  27. 27.
    M.G. Simić, Jovanović SV Food phytochemicals for cancer prevention II. Teas, spices, and herbs (American Chemical Society, Washington DC, 1994)Google Scholar
  28. 28.
    H.A. Ross, G.J. McDougall, D. Stewart, Phytochem 68, 218–228 (2007). doi: 10.1016/j.phytochem.2006.10.014 CrossRefGoogle Scholar
  29. 29.
    M.I. Gil, F.A. Tomas-Barberan, B. Hess-Pierce, D.M. Holcroft, A.A. Kader, J Agric Food Chem 48, 4581–4589 (2000). doi: 10.1021/jf000404a CrossRefGoogle Scholar
  30. 30.
    M.R. Sartippour et al., Int J Oncol 32, 475–480 (2008)Google Scholar
  31. 31.
    C. Nepka, E. Asprodini, D. Kouretas, Eur J Drug Metab Pharmacokinet 24, 183–189 (1999)Google Scholar
  32. 32.
    Das NP Flavonoids in biology and medicine III, Current issues in flavonoids research (National University of Singapore, Singapore, 1990)Google Scholar
  33. 33.
    B. Cerda, J.J. Ceron, F.A. Tomas-Barberan, J.C. Espin, J Agric Food Chem 51, 3493–3501 (2003). doi: 10.1021/jf020842c CrossRefGoogle Scholar
  34. 34.
    J.C. Espin, R. Gonzalez-Barrio, B. Cerda, C. Lopez-Bote, A.I. Rey, F.A. Tomas-Barberan, J Agric Food Chem 55, 10476–10485 (2007). doi: 10.1021/jf0723864 CrossRefGoogle Scholar
  35. 35.
    M. Mojović, I. Spasojević, G. Bačić, J Chem Inf Model 25, 1716–1718 (2005). doi: 10.1021/ci050173d CrossRefGoogle Scholar
  36. 36.
    I. Spasojević, V. Maksimović, J. Zakrzewska, G. Bačić, J Chem Inf Model 45, 1680–1685 (2005). doi: 10.1021/ci0501746 CrossRefGoogle Scholar
  37. 37.
    P. Cooper, J. Kudynska, H.A. Buckmaster, R. Kudynski, Biochim Biophys Acta 1139, 70–76 (1992)Google Scholar
  38. 38.
    K.K. Gambhir, V.R. Agarwal, J Natl Med Assoc 82, 565–570 (1990)Google Scholar
  39. 39.
    K.J. Meyers, T.J. Swiecki, A.E. Mitchell, J Agric Food Chem 54, 7686–7691 (2006). doi: 10.1021/jf061264t CrossRefGoogle Scholar
  40. 40.
    F. Festa, T. Aglitti, G. Duranti, R. Ricordy, P. Perticone, R. Cozzi, Anticancer Res 21, 3903–3908 (2001)Google Scholar
  41. 41.
    L. Li, R. Tsao, R. Yang, C. Liu, H. Zhu, J.C. Young, J Agric Food Chem 54, 8033–8040 (2006). doi: 10.1021/jf0612171 CrossRefGoogle Scholar
  42. 42.
    M. del Carmen Pinto, P. Macias, J Agric Food Chem 53, 9225–9230 (2005). doi: 10.1021/jf051559r CrossRefGoogle Scholar
  43. 43.
    S.C. Sahu, G.C. Gray, Cancer Lett 85, 159–164 (1994). doi: 10.1016/0304-3835(94)90269-0 CrossRefGoogle Scholar
  44. 44.
    E. Middleton Jr., C. Kandaswami, T.C. Theoharides, Pharmacol Rev 52, 673–751 (2000)Google Scholar
  45. 45.
    N.P. Seeram, S.M. Henning, Y. Zhang, M. Suchard, Z. Li, D. Heber, J Nutr 136, 2481–2485 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jelena Živković
    • 1
  • Zoran Zeković
    • 2
  • Ibrahim Mujić
    • 3
  • Dejan Gođevac
    • 4
  • Miloš Mojović
    • 5
  • Aida Mujić
    • 6
  • Ivan Spasojević
    • 7
  1. 1.Medical Faculty of NišUniversity of NišNišSerbia
  2. 2.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  3. 3.Colegium Fluminense Polytechnic of RijekaRijekaCroatia
  4. 4.Institute of Chemistry, Technology and MetallurgyBelgradeSerbia
  5. 5.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  6. 6.Health InstituteRijekaCroatia
  7. 7.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations