Food Biophysics

, 3:382

Antioxidant and Neuroprotective Properties of Sour Tea (Hibiscus sabdariffa, calyx) and Green Tea (Camellia sinensis) on some Pro-oxidant-induced Lipid Peroxidation in Brain in vitro

Original Article

DOI: 10.1007/s11483-008-9092-5

Cite this article as:
Oboh, G. & Rocha, J.B.T. Food Biophysics (2008) 3: 382. doi:10.1007/s11483-008-9092-5

Abstract

Oxidative stress is the cause of neurodegenerative disorders such as Lou Gehrig’s disease, Parkinson’s disease, and Huntington’s disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). This present study sought to compare the ability of aqueous extract of sour tea (Hibiscus sabdariffa, calyx) and green tea (Camellia sinensis) to prevent some pro-oxidant [Fe (II), sodium nitroprusside, quinolinic acid]-induced lipid peroxidation in rat’s brain in vitro. Aqueous extracts of both teas were prepared (1 g tea in 100 ml of hot water). Thereafter, the ability of the extracts to prevent 25 μM FeSO4, 7 μM sodium nitroprusside, and 1 mM quinolinic acid-induced lipid peroxidation in isolated rat’s brain tissue preparation was determined in vitro. Subsequently, the total phenol content, reducing power, Fe (II) chelating and OH radical scavenging ability were determined. The results of the study revealed that both teas significantly (P < 0.05) inhibit lipid peroxidation in basal and pro-oxidant-induced lipid peroxidation in the rat’s brain homogenates in a dose-dependent manner. Also, the teas had high total phenol content [sour (13.3 mg/g); green (24.5 mg/g)], reducing power, and Fe (II) chelating and OH radical scavenging ability (except sour tea). However, green tea had a significantly higher (P < 0.05) ability to inhibit lipid peroxidation in both the basal and pro-oxidant-induced lipid peroxidation in rat’s brain homogenates in vitro. Therefore, it is obvious from the study that both teas had high antioxidant properties and could inhibit Fe2+, sodium nitroprusside, and quinolinic acid-induced lipid peroxidation in brain. However, green tea had a higher inhibitory effect, which may probably be due to its high total phenol content, reducing power, Fe (II) chelating ability, and OH radical scavenging ability.

Keywords

Green tea Sour tea Pro-oxidants Lipid peroxidation Brain 

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Biochemistry DepartmentFederal University of TechnologyAkureNigeria
  2. 2.Departamento de QuimicaUniversidade Federal de Santa Maria (UFSM)CamobiBrazil

Personalised recommendations