Advertisement

Food Biophysics

, 3:382 | Cite as

Antioxidant and Neuroprotective Properties of Sour Tea (Hibiscus sabdariffa, calyx) and Green Tea (Camellia sinensis) on some Pro-oxidant-induced Lipid Peroxidation in Brain in vitro

  • G. Oboh
  • J. B. T. Rocha
Original Article

Abstract

Oxidative stress is the cause of neurodegenerative disorders such as Lou Gehrig’s disease, Parkinson’s disease, and Huntington’s disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). This present study sought to compare the ability of aqueous extract of sour tea (Hibiscus sabdariffa, calyx) and green tea (Camellia sinensis) to prevent some pro-oxidant [Fe (II), sodium nitroprusside, quinolinic acid]-induced lipid peroxidation in rat’s brain in vitro. Aqueous extracts of both teas were prepared (1 g tea in 100 ml of hot water). Thereafter, the ability of the extracts to prevent 25 μM FeSO4, 7 μM sodium nitroprusside, and 1 mM quinolinic acid-induced lipid peroxidation in isolated rat’s brain tissue preparation was determined in vitro. Subsequently, the total phenol content, reducing power, Fe (II) chelating and OH radical scavenging ability were determined. The results of the study revealed that both teas significantly (P < 0.05) inhibit lipid peroxidation in basal and pro-oxidant-induced lipid peroxidation in the rat’s brain homogenates in a dose-dependent manner. Also, the teas had high total phenol content [sour (13.3 mg/g); green (24.5 mg/g)], reducing power, and Fe (II) chelating and OH radical scavenging ability (except sour tea). However, green tea had a significantly higher (P < 0.05) ability to inhibit lipid peroxidation in both the basal and pro-oxidant-induced lipid peroxidation in rat’s brain homogenates in vitro. Therefore, it is obvious from the study that both teas had high antioxidant properties and could inhibit Fe2+, sodium nitroprusside, and quinolinic acid-induced lipid peroxidation in brain. However, green tea had a higher inhibitory effect, which may probably be due to its high total phenol content, reducing power, Fe (II) chelating ability, and OH radical scavenging ability.

Keywords

Green tea Sour tea Pro-oxidants Lipid peroxidation Brain 

Notes

Acknowledgements

The authors wish to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil and Academy of Science for the Developing World (TWAS), Trieste Italy, for granting Dr. G. Oboh a Post-Doctoral fellowship tenable at Biochemical Toxicology Unit of the Department of Chemistry, Federal University of Santa Maria, Brazil. This study was also supported by CAPES, FIPE/UFSM, VITAE Foundation, and FAPERGS.

References

  1. 1.
    G. Oboh, J. Pharm .Toxicol. 1(1), 47–53 (2006)CrossRefGoogle Scholar
  2. 2.
    G. Oboh, R.L. Puntel, J.B.T. Rocha, Food. Chem. 102(1), 178–185 (2007). doi: 10.1016/j.foodchem.2006.05.048 CrossRefGoogle Scholar
  3. 3.
    J.L. Baudaux, J. Peynet, A. Guillausseau, A. Legrand, J. Delattre, F. Rousselet, Ann. Bio. Clin. 51, 494 (1993)Google Scholar
  4. 4.
    K.J.A. Davies, Oxidative stress: the paradox of aerobic life Biochem. Soc. Symposium 61, 1–34 (1994)Google Scholar
  5. 5.
    S. Sasaki, T. Ohta, E.A. Decker, J. Agric. Food. Chem. 44, 1682–1686 (1996). doi: 10.1021/jf950778h CrossRefGoogle Scholar
  6. 6.
    O.I. Aruoma, Food. Chem. Toxicol. 62, 671–683 (1994). doi: 10.1016/0278-6915(94)90011-6 Google Scholar
  7. 7.
    I. Gulcın, M. Oktay, E. Kıreccı, O.I. Kufrevıoglu, Food. Chem. 83, 371–382 (2003). doi: 10.1016/S0308-8146(03)00098-0 CrossRefGoogle Scholar
  8. 8.
    I. Vega-Naredo, B. Poeggeler, V. Sierra-Sanchez, B. Caballero, C. Tomas-Zapico, O. Alvarez-Garcia et al., J. Pineal. Res. 39, 266–275 (2005). doi: 10.1111/j.1600-079X.2005.00243.x CrossRefGoogle Scholar
  9. 9.
    R.G. Shulman, D.L. Rothman, K.L. Behar, F. Hyder, Trends. Neurosci. 27(8), 489–495 (2004). doi: 10.1016/j.tins.2004.06.005 CrossRefGoogle Scholar
  10. 10.
    G. Oboh, A.A. Akindahunsi, Nutr. Health. 18(1), 29–36 (2004)Google Scholar
  11. 11.
    G. Oboh, Lebensm.-Wiss.u.-Technol. 38(5), 513–517 (2005)Google Scholar
  12. 12.
    P. Hochstein, A.H. Atallah, Mutat. Res. 202, 363–375 (1988). doi: 10.1016/0027-5107(88)90198-4 Google Scholar
  13. 13.
    L.M. Perry, Medicinal plants of east and southeast Asia (MIT Press, Cambridge, 1980)Google Scholar
  14. 14.
    S. Passamonti, U. Vrhovsek, A. Vanzo, F. Mattivi, J. Agric. Food. Chem. 53, 7029–7034 (2005). doi: 10.1021/jf050565k CrossRefGoogle Scholar
  15. 15.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods. Enzymol. 299, 152–178 (1999). doi: 10.1016/S0076-6879(99)99017-1 CrossRefGoogle Scholar
  16. 16.
    G. Minotti, S.D. Aust, Free. Radic. Biol. Med. 3, 379–387 (1987). doi: 10.1016/0891-5849(87)90016-5 CrossRefGoogle Scholar
  17. 17.
    R.L. Puntel, C.W. Nogueira, J.B.T. Rocha, Neurochem. Res. 30(2), 225–235 (2005). doi: 10.1007/s11064-004-2445-7 CrossRefGoogle Scholar
  18. 18.
    B. Halliwell, J.M.C. Gutteridge, FEBS. Lett. 128, 347–352 (1981). doi: 10.1016/0014-5793(81)80114-7 CrossRefGoogle Scholar
  19. 19.
    R. Pulido, L. Bravo, F. Saura-Calixto, J. Agric. Food. Chem. 48, 3396–3402 (2000). doi: 10.1021/jf9913458 CrossRefGoogle Scholar
  20. 20.
    N.A.V. Belle, G.D. Dalmolin, G. Fonini, M.A. Rubim, J.B.T. Rocha, Brain. Res. 1008, 245–251 (2004). doi: 10.1016/j.brainres.2004.02.036 CrossRefGoogle Scholar
  21. 21.
    H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 95, 351–358 (1979). doi: 10.1016/0003-2697(79)90738-3 CrossRefGoogle Scholar
  22. 22.
    J.H. Zar, Biostatistical analysis (Prentice-Hall, Englewood Cliffs, 1984), p. 620Google Scholar
  23. 23.
    Y. Chu, J. Sun, X. Wu, R.H. Liu, J. Agric. Food. Chem. 50, 6910–6916 (2002). doi: 10.1021/jf020665f CrossRefGoogle Scholar
  24. 24.
    J. Sun, Y. Chu, X. Wu, R. Liu, J. Agric. Food. Chem. 50, 7449–7454 (2002). doi: 10.1021/jf0207530 CrossRefGoogle Scholar
  25. 25.
    G. Oboh, J.B.T. Rocha, Eur. Food. Res. Technol. 225(2), 239–247 (2007). doi: 10.1007/s00217-006-0410-1 CrossRefGoogle Scholar
  26. 26.
    A. Marin, F. Ferreres, F.A. Tomas-Barberan, M.I. Gil, J. Agric. Food. Chem. 52, 3861–3869 (2004). doi: 10.1021/jf0497915 CrossRefGoogle Scholar
  27. 27.
    M. Materska, I. Perucka, J. Agric. Food. Chem. 53, 1750–1756 (2005). doi: 10.1021/jf035331k CrossRefGoogle Scholar
  28. 28.
    K.W. Lee, H.J. Lee, J. Nutr. 132(4), 785 (2002)Google Scholar
  29. 29.
    M.P. Zago, S.V. Verstraeten, P.I. Oteiza, Biol. Res. 33(2), 143–150 (2000)CrossRefGoogle Scholar
  30. 30.
    J.N. Bates, M.T. Baker, R. Guerra, D.G. Harrison, Biochem. Pharmacol. 42, S157–S165 (1990). doi: 10.1016/0006-2952(91)90406-U CrossRefGoogle Scholar
  31. 31.
    B. Halliwell, J.M.C. Gutteridge, Free radicals in biology and medicine, 3rd edn. (Oxford University Press, Oxford, 1999), p. 936Google Scholar
  32. 32.
    A. Pannala, C.A. Rice-Evans, B. Halliwell, S. Singh, Biophys. Res. Commun. 232, 164–168 (1997). doi: 10.1006/bbrc.1997.6254 CrossRefGoogle Scholar
  33. 33.
    W. Cammer, Brain. Res. 896, 157–160 (2001). doi: 10.1016/S0006-8993(01)02017-0 CrossRefGoogle Scholar
  34. 34.
    M. Wolfensberger, U. Amsler, M. Cuenod, A.C. Foster, W.O. Whetsell Jr., R. Schwarcz, Neurosci. Lett. 41, 247–252 (1983). doi: 10.1016/0304-3940(83)90458-5 CrossRefGoogle Scholar
  35. 35.
    J. Cabrera, R.J. Reiter, D. Tan, W. Qi, R.M. Sainz, J.C. Mayo et al., Neuropharmacol. 39, 507–514 (2000). doi: 10.1016/S0028-3908(99)00128-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Biochemistry DepartmentFederal University of TechnologyAkureNigeria
  2. 2.Departamento de QuimicaUniversidade Federal de Santa Maria (UFSM)CamobiBrazil

Personalised recommendations