Food Biophysics

, Volume 3, Issue 3, pp 329–332 | Cite as

Attachment Strength of Listeria monocytogenes and its Internalin-Negative Mutants

  • B. Y. Chen
  • T. J. Kim
  • Y. S. Jung
  • J. L. Silva
Original Article

Abstract

A single cell of Listeria monocytogenes attached on food contact surfaces can be a potential source of cross-contamination in a food-processing plant. To see whether internalin A (InlA) and B (InlB), major surface proteins on L. monocytogenes, play a significant role in the attachment process, wild-type L. monocytogenes EGD (LM_EGD) and its isogenic internalin-negative mutants (LM_EGDΔinlA, LM_EGDΔinlB, and LM_EGDΔinlAB) were used to determine attachment strength on inert glass surface. Western blot analysis using InlA and InlB antibodies confirmed the absence of InlA in LM_EGDΔinlA, InlB in LM_EGDΔinlB, and both InlA and InlB in LM_EGDΔinlAB. Regardless of initial attachment numbers, LM_EGD which expressed both InlA and InlB proteins exhibited the strongest attachment strength while the double mutant (LM_EGDΔinlAB) exhibited the weakest. The two single mutants (LM_EGDΔinlA and LM_EGDΔinlB) that expressed only one type of the internalins were shown to have intermediate attachment strength. These results suggest that both InlA and InlB expression play a significant role in the attachment strength of L. monocytogenes on glass surface.

Keywords

Listeria monocytogenes Isogenic internalin-negative mutants InlA InlB Attachment strength Western blot analysis 

Notes

Acknowledgments

Approved for publication as Journal Article No.11053 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University. This work was supported in part by the Mississippi Agricultural and Forestry Experiment Station Project Number MIS-371272 and by USDA-ARS Grant No. 58-0790-5-137. We gratefully acknowledge Dr. Pascale Cossart (Départment de Biologie Cellulaire et Infection, INSTITUT PASTEUR, France) for kindly providing wild-type L. monocytogenes EGD and its mutant strains and Dr. Arun K. Bhunia for kindly providing anti-Listeria InlB antibody.

References

  1. 1.
    R.T. Sawyer, D.A. Drevets, P.A. Campbell, T.A. Potter, J. Leuko. Biol. 60, 603–610 (1996)Google Scholar
  2. 2.
    T. Chakraborty, J. Wehland, ed. by S.H.E. Kaufmann. Host Response to Intracellular Pathogens (Landes Company, Austin, 1997), p. 271Google Scholar
  3. 3.
    S.K. Parida, E. Domann, M. Rohde, S. Muller, A. Darji, R. Hain, J. Wehland, T. Chakrabory, Mol. Microbiol. 28, 81–93 (1998)CrossRefGoogle Scholar
  4. 4.
    H. Bierne, P. Cossart, J. Cell Sci. 115, 3357–3367 (2002)Google Scholar
  5. 5.
    A. Schuchat, B. Swaminathan, C.V. Broome, Clin. Microbiol. Rev. 4, 169–183 (1991)Google Scholar
  6. 6.
    A.A. Lathroap, Z.W. Jaradat, T. Haley, A.K. Bhunia, J. Immun. Meth. 281, 119–128 (2003)CrossRefGoogle Scholar
  7. 7.
    C. Jacquet, E. Gouin, D. Jeannel, P. Cossart, J. Rocourt, Appl. Environ. Microbiol. 68, 616–622 (2002)CrossRefGoogle Scholar
  8. 8.
    J. Rocourt, P. Cossart, ed. by M.P. Doyle, L.R. Beuchat, T.J. Montville. Food Microbiology Fundamentals and Frontiers (American Society for Microbiology, Washington, DC, 1997), p. 337Google Scholar
  9. 9.
    A.A. Mafu, D. Roy, J. Goulet, P. Magny, Appl. Environ. Microbiol. 57, 1969–1973 (1990)Google Scholar
  10. 10.
    I.C. Blackman, J.F. Frank, J. Food Prot. 59, 827–831 (1996)Google Scholar
  11. 11.
    L.M. Smoot, M.D. Pierson, J. Food Prot. 61, 1286–1292 (1998)Google Scholar
  12. 12.
    M. Fletcher, Can. J. Microbiol. 23, 1–6 (1977)CrossRefGoogle Scholar
  13. 13.
    J.W. Costeron, K.J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta, T.J. Marrie, Ann. Rev. Microbiol. 41, 435–464 (1987)CrossRefGoogle Scholar
  14. 14.
    J.F. Frank, R.A. Koffi, J. Food Prot. 53, 928–932 (1990)Google Scholar
  15. 15.
    S.H. Lee, J.F. Frank, J. Food Prot. 54, 4–6 (1991)Google Scholar
  16. 16.
    T. Kim, J.L. Silva, J. Rapid Meth. Auto. 13, 127–132 (2005)CrossRefGoogle Scholar
  17. 17.
    C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon, P. Cossart, Cell 68, 521–531 (1992)CrossRefGoogle Scholar
  18. 18.
    M. Olier, F. Pierre, S. Rousseaux, J.P. Lemaître, A. Rousset, P. Piveteau, J. Guzzo, Infect. Immun. 71, 1217–1224 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Müller, T. Hain, P. Pashalidis, A. Lingnau, E. Domann, T. Chakraborty, J. Wehland, Infect. Immun. 66, 3128–3133 (1998)Google Scholar
  20. 20.
    T.J. Kim, Y.S. Jung, J.L. Silva, S. Danviriyakul, Food Biotech. 21, 161–168 (2007)CrossRefGoogle Scholar
  21. 21.
    P.J. Eginton, H. Gibson, J. Holah, P.S. Handley, P. Gilbert, J. Indust. Microbiol. 15, 305–310 (1995)CrossRefGoogle Scholar
  22. 22.
    D.G. Allison, M.A. Cronin, J. Hawker, S. Freeman, J. Basic Microbiol. 40, 3–6 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Vatanyoopaisarn, A. Nazli, C.E.R. Dodd, C.E.D. Rees, W.M. Waites, Appl. Environ. Microbiol. 66, 860–863 (2000)CrossRefGoogle Scholar
  24. 24.
    A.A. Mafu, D. Roy, J. Goulet, P. Magny. J. Food Prot. 53, 742–746 (1990)Google Scholar
  25. 25.
    T.F. Tadros, ed. by K.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter, B. Vincent. Microbial Adhesion to Surfaces (Horwood Ltd., London, 1980), p. 93Google Scholar
  26. 26.
    O. Tresse, V. Lebret, T. Benezech, C. Faille, J. Appl. Microbiol. 101, 53–62 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Marino, L. Braun, P. Cossart, P. Ghosh, PNAS 97, 8784–8788 (2000)CrossRefGoogle Scholar
  28. 28.
    C.A. Capestany, M. Kuboniwa, I.Y. Jung, Y. Park, G.D. Tribble, R.J. Lamont, Infect. Immun. 74, 3002–3005 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. Y. Chen
    • 1
  • T. J. Kim
    • 1
  • Y. S. Jung
    • 2
  • J. L. Silva
    • 1
  1. 1.Department of Food Science, Nutrition, and Health PromotionMississippi State UniversityStarkvilleUSA
  2. 2.Department of Biochemistry and Molecular BiologyMississippi State UniversityStarkvilleUSA

Personalised recommendations