Food Biophysics

, Volume 3, Issue 1, pp 25–32 | Cite as

Starch Granule Hydration—A MAS NMR Investigation

  • Flemming H. Larsen
  • Andreas Blennow
  • Søren B. Engelsen
Article

Abstract

Starch is the most important energy resource in human diet, and starch is used extensively as a food ingredient to manipulate the quality of our food. In both applications, starch functionality is intimately related to its hydration level. This paper aims at elucidating the starch granule hydration by investigating genotype-specific differences for native wheat, maize, and potato starches by 1H high-resolution (HR) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The preparations as analyzed in D2O suspensions at room temperature provided NMR spectra with large differences in signal-to-noise (S/N) ratio ranging over several orders of magnitude. It was possible to assign a wide range of components including anomeric α-1,4 and α-1,6-protons from reducing and non-reducing ends, respectively. We utilized the effect that only mobile protons (e.g, dissolved or partially hydrated) are observed using 1H HR-MAS spectroscopy, whereas immobile protons (e.g., in water-inaccessible regions) of the starch granule are not observed due to strong homonuclear interactions to verify the hypothesis that the variations in signal intensities between the different starches are caused by genotype-specific variations in assembly of the starch granules and that the signal intensity, thus, indicates the extent of accessible granule hydration surfaces. Moreover, events taking place during thermal starch granule hydration (gelatinization) were investigated for ten representative starches. NMR spectra of suspended samples were acquired at 30, 45 and 70 °C and again after cooling at 30 °C. A substantial increase in NMR signal intensity occurs above the gelatinization temperature due to extensive proton mobilization in the starch granule assembly. The relative integrated spectral intensities at 30 °C before and after gelatinization at 70 °C showed differences in gain factors between 4 and 193. Also, 31P MAS NMR spectra displayed a similar significant intensity gain upon gelatinization. The results showed that the phosphate groups in the starch granule are mobilized concomitantly with the protons and thus deeply “buried” in the immobile (water inaccessible) domains.

Keywords

Starch NMR Hydration Gelatinization 

References

  1. 1.
    R.P. Ellis, M.P. Cochrane, M.F.B. Dale, C.M. Duffus, A. Lynn, I.M. Morrison, R.D.M. Prentice, J.S. Swanston, and S.A. Tiller, J Sci Food Agric 77, 289–311 (1998).CrossRefGoogle Scholar
  2. 2.
    F. Franks, Water Relationships in Food; (Plenum Press, New York 1991), pp. 1–19.Google Scholar
  3. 3.
    T.A. Waigh, M.J. Gidley, B.U. Komanshek and A.M. Donald, Carbohydr Res 328, 165–176 (2000).CrossRefGoogle Scholar
  4. 4.
    P.J. Jenkins, R.E. Cameron and A.M. Donald, Starch-Staerke 45, 417–420 (1993).CrossRefGoogle Scholar
  5. 5.
    A. Imberty, H. Chanzy, S. Pérez, A. Buléon and V. Tran, J Mol Biol 201, 365–378 (1988).CrossRefGoogle Scholar
  6. 6.
    A. Imberty and S. Pérez, Biopolymers 27, 1205–1221 (1988).CrossRefGoogle Scholar
  7. 7.
    H.-C. Wu and A. Sarko, Carbohyd Res 6, 27–40 (1978).Google Scholar
  8. 8.
    A. Imberty, A. Buléon., V. Tran and S. Pérez, Starch/Stärke 43, 375–384 (1991).CrossRefGoogle Scholar
  9. 9.
    A. Blennow, K. Houborg, R. Andersson, E. Bidzińska, K. Dyrek and M. Łabanowska, Biomacromolecules 7, 965–974 (2006).CrossRefGoogle Scholar
  10. 10.
    A. Blennow, T.H. Nielsen, L. Baunsgaard, R. Mikkelsen and S.B. Engelsen, Trends Plant Sci 7, 445–450 (2002).CrossRefGoogle Scholar
  11. 11.
    M.J. Gidley and S.M. Bociek, J Am Chem Soc 107, 7040–7044 (1985).CrossRefGoogle Scholar
  12. 12.
    F. Horii, A. Hirai and R. Kitamaru, Macromolecules 19, 930–932 (1986).CrossRefGoogle Scholar
  13. 13.
    R.P. Veregin, C.A. Fyfe, R.H. Marchessault and M.G. Taylor, Macromolecules 19, 1030–1034 (1986).CrossRefGoogle Scholar
  14. 14.
    K. Kainuma and D. French, Biopolymers 11, 2241–2250 (1972).CrossRefGoogle Scholar
  15. 15.
    M.J. Gidley, Carbohyd Res 139, 85–93 (1985).Google Scholar
  16. 16.
    D.D. McIntyre, C. Ho and H.J. Vogel, Starch/Stärke 42, 260–267 (1990).CrossRefGoogle Scholar
  17. 17.
    J. Lelievre and J. Mitchell, Starch/Stärke 4, 113–115 (1975).CrossRefGoogle Scholar
  18. 18.
    M.A. Glaring, K.B. Koch and A. Blennow, Biomacromolecules 7, 2310–2320 (2006).CrossRefGoogle Scholar
  19. 19.
    A. Blennow, B. Wischmann and K. Houborg et al, Int J Biol Macromol 36, 159–168 (2005).CrossRefGoogle Scholar
  20. 20.
    A. Bax, J Magn Reson 65, 142–145 (1985).Google Scholar
  21. 21.
    B. Ancian, I. Bourgeois, J.-F. Dauphin and A.A. Shaw, J Magn Reson 125, 348–354 (1997).CrossRefGoogle Scholar
  22. 22.
    S.-F. Liu and K. Schmidt-Rohr, Macromolecules 34, 8416–8418 (2001).CrossRefGoogle Scholar
  23. 23.
    G.S. Nilsson, K.-E. Bergquist, U. Nilsson and L. Gorton, Starch/Stärke 48, 352–357 (1996).CrossRefGoogle Scholar
  24. 24.
    J.A. Creek, G.R. Ziegler and J. Runt, Biomacromolecules 7, 761–770 (2006).CrossRefGoogle Scholar
  25. 25.
    F. Corzana, M.S. Motawia and C.H. du Penhoat et al, J Am Chem Soc 126, 13144–13155 (2004).CrossRefGoogle Scholar
  26. 26.
    A. Blennow, K.A. Sjöland, R. Andersson and P. Kristiansson, Anal Biochem 347, 327–329 (2005).CrossRefGoogle Scholar
  27. 27.
    P. Murbeck and C. Tellier, Starch/Stärke 43, 25–27 (1991).CrossRefGoogle Scholar
  28. 28.
    T. Kasemsuwan and J.-L. Jane, Cereal Chem 73, 702–707 (1996).Google Scholar
  29. 29.
    S.B. Engelsen, A.Ø. Madsen, A. Blennow, M.S. Motawia, B.L. Møller and S. Larsen, FEBS Lett 541, 137–144 (2003).CrossRefGoogle Scholar
  30. 30.
    A.M. Bay-Smidt, B. Wischmann, C.E. Olsen and T.H. Nielsen, Starch/Stärke 46, 167–172 (1994).Google Scholar
  31. 31.
    A. Blennow, A.M. Bay-Smidt, C.E. Olsen and B.L. Møller, Int J Biol Macromol 27, 211–218 (2000).CrossRefGoogle Scholar
  32. 32.
    C.G. Oates, Trends Food Sci Technol 8, 375–382 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Flemming H. Larsen
    • 1
  • Andreas Blennow
    • 2
  • Søren B. Engelsen
    • 1
  1. 1.Department of Food Science, Quality & TechnologyUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Center for Molecular Plant Physiology (PlaCe), Plant Biochemistry Laboratory, Department of Plant BiologyUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations