Food Biophysics

, Volume 2, Issue 2–3, pp 108–116 | Cite as

Effect of Water Content on Glass Transition and Protein Aggregation of Whey Protein Powders During Short-Term Storage

Article

Abstract

The objectives of this study were to investigate the moisture-induced protein aggregation of whey protein powders and to elucidate the relationship of protein stability with respect to water content and glass transition. Three whey protein powder types were studied: whey protein isolate (WPI), whey protein hydrolysates (WPH), and beta-lactoglobulin (BLG). The water sorption isotherms were determined at 23 and 45°C, and they fit the Guggenheim–Andersson–DeBoer (GAB) model well. Glass transition was determined by differential scanning calorimeter (DSC). The heat capacity changes of WPI and BLG during glass transition were small (0.1 to 0.2 Jg−1 °C−1), and the glass transition temperature (Tg) could not be detected for all samples. An increase in water content in the range of 7 to 16% caused a decrease in Tg from 119 down to 75°C for WPI, and a decrease from 93 to 47°C for WPH. Protein aggregation after 2 weeks’ storage was measured by the increase in insoluble aggregates and change in soluble protein fractions. For WPI and BLG, no protein aggregation was observed over the range of 0 to 85% RH, whereas for WPH, ∼50% of proteins became insoluble after storage at 23°C and 85% RH or at 45°C and ≥73% RH, caused mainly by the formation of intermolecular disulfide bonds. This suggests that, at increased water content, a decrease in the Tg of whey protein powders results in a dramatic increase in the mobility of protein molecules, leading to protein aggregation in short-term storage.

Keywords

Whey proteins Hydrolysates Water Glass transition Protein aggregation Disulfide bond 

References

  1. 1.
    Y.H. Roos and M. Karel, Biotechnol Prog 6, 159 (1990).CrossRefGoogle Scholar
  2. 2.
    F.M. Netto, S.A. Desobry and T.P. Labuza, Int J Food Prop 1, 141 (1998).CrossRefGoogle Scholar
  3. 3.
    M. Saltmarch and T.P. Labuza, J Food Sci 45, 1231 (1980).CrossRefGoogle Scholar
  4. 4.
    L.E. Chuy and T.P. Labuza, J Food Sci 59, 43 (1994).CrossRefGoogle Scholar
  5. 5.
    K. Jouppila and Y.H. Roos, J Dairy Sci 77, 2907 (1994).CrossRefGoogle Scholar
  6. 6.
    Y.H. Roos, Lait 82, 474 (2002).CrossRefGoogle Scholar
  7. 7.
    F. Morgan, S. Bouhallab, D. Mollé, G. Henry, J.L. Maubois and J. Léonil, Int Dairy J 8, 95 (1998).CrossRefGoogle Scholar
  8. 8.
    F. Guyomarc’h, F. Warin, D.D. Muir and J. Leaver, Int Dairy J 10, 863 (2000).CrossRefGoogle Scholar
  9. 9.
    M.E.C. Thomas, J. Scher, S. Desobry-Banon and S. Desobry, Crit Rev Food Sci Nutr 44, 297 (2004).CrossRefGoogle Scholar
  10. 10.
    S. McCluskey, J.F. Connolly, R. Devery et al., J Food Sci 62, 331 (1997).CrossRefGoogle Scholar
  11. 11.
    H. Stapelfeldt, B.R. Nielsen and L.H. Skibsted, Int Dairy J 7, 331 (1997).CrossRefGoogle Scholar
  12. 12.
    J.H. Liang, Food Chem 71, 459 (2000).CrossRefGoogle Scholar
  13. 13.
    W.R. Liu, R. Langer and A.M. Klibanov, Biotechnol Bioeng 37, 177 (1991).CrossRefGoogle Scholar
  14. 14.
    H.R. Costantino, R. Langer and A.M. Klibanov, Pharm Res 11, 21 (1994).CrossRefGoogle Scholar
  15. 15.
    P.F. Fox. In: Advanced Dairy Chemistry, edited by P.F. Fox and P.L.H. McSweeney (Kluwer, New York 2003).Google Scholar
  16. 16.
    H. Levine and L. Slade, Carbohydr Polym 6, 213 (1986).CrossRefGoogle Scholar
  17. 17.
    T.P. Labuza and K.A. Nelson, Water Analyzer Programs (University of Minnesota, Saint Paul, MN 1993).Google Scholar
  18. 18.
    H.D. Hill and J.G. Straka, Anal Biochem 170, 203 (1988).CrossRefGoogle Scholar
  19. 19.
    A. Farahnaky, F. Badii, I.A. Farhat, J.R. Mitchell and S.E. Hill, Biopolymers 78, 69 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Rüegg, U. Moor and B. Blanc, J Dairy Res 44, 509 (1977).CrossRefGoogle Scholar
  21. 21.
    Y.H. Roos, Phase Transitions in Foods (Academic, New York, 1995), Chap. 4, p. 73.Google Scholar
  22. 22.
    E. Berlin, B.A. Anderson and M.J. Pallanch, J Dairy Sci 51, 1339 (1968).CrossRefGoogle Scholar
  23. 23.
    L.N. Bell and T.P. Labuza, Moisture Sorption: Practical Aspects of Isotherm Measurement and Use (AACC, Inc., Saint Paul, MN, 2000), Chap. 3, p. 33.Google Scholar
  24. 24.
    W. Bushuk and C.A. Winkler, Cereal Chem 34, 73 (1957).Google Scholar
  25. 25.
    T.P. Labuza, A. Kaanane and J.Y. Chen, J Food Sci 50, 385 (1985).CrossRefGoogle Scholar
  26. 26.
    A. Kuye and L.O. Sanni, Int J Food Prop 5, 599 (2002).CrossRefGoogle Scholar
  27. 27.
    N.R. Graciala, M.J. Urbicain and E. Rotstein, J Food Sci 47, 1448 (1982).Google Scholar
  28. 28.
    L.N. Bell and M.J. Hageman, J Food Sci 61, 372 (1996).CrossRefGoogle Scholar
  29. 29.
    L. Burin, K. Jouppila, Y. Roos, J. Kansikas and M.P. Buera, J Agric Food Chem 48, 5263 (2000).CrossRefGoogle Scholar
  30. 30.
    G.I. Tsereteli, T.V. Belopolskaya, N.A. Grunina and O.L. Vaveliouk, J Therm Anal Calorim 62, 89 (2000).CrossRefGoogle Scholar
  31. 31.
    P. Schuck, E. Blanchard, A. Dolivet, S. Méjean, E. Onillon and R. Jeantet, Lait 85, 295 (2005).CrossRefGoogle Scholar
  32. 32.
    M. Rüegg, U. Moor and B. Blanc, Biochim Biophys Acta 400, 334 (1975).Google Scholar
  33. 33.
    L.N. Bell, M.J. Hageman and J.M. Bauer, Biopolymers 35, 201 (1995).CrossRefGoogle Scholar
  34. 34.
    L.N. Bell, M.J. Hageman and L.M. Muraoka, J Pharm Sci 84, 707 (1995).CrossRefGoogle Scholar
  35. 35.
    A. Morales and J.L. Kokini, J Rheol 43, 315 (1999).CrossRefGoogle Scholar
  36. 36.
    N.M. D’Cruz and L.N. Bell, J Food Sci 70, 64 (2005).CrossRefGoogle Scholar
  37. 37.
    I.V. Sochava, Biophys Chem 69, 31 (1997).CrossRefGoogle Scholar
  38. 38.
    P.E. Groleau, S.F. Gauthier and Y. Pouliot, Int Dairy J 13, 887 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Food Science and NutritionUniversity of MinnesotaSaint PaulUSA

Personalised recommendations