Advertisement

Food Biophysics

, Volume 2, Issue 2–3, pp 83–92 | Cite as

Characterization of the Physical State of Spray-Dried Inulin

  • Sébastien N. RonkartEmail author
  • Claude Deroanne
  • Michel Paquot
  • Christian Fougnies
  • Jean-Christophe Lambrechts
  • Christophe S. Blecker
Article

Abstract

Modulated differential scanning calorimetry, wide angle x-ray scattering, and environmental scanning electron microscopy were used to investigate the physical and morphological properties of chicory root inulin spray dried under different conditions. When the feed temperature increased up to 80 °C, the average degree of polymerization of the solubilized fraction increased, leading to a higher glass transition temperature (Tg). Above 80 °C, the samples were completely amorphous, and the Tg did not change. The starting material was semicrystalline, and the melting region was composed of a dual endotherm; the first peak subsided as the feed temperature increased up to a temperature of 70 °C, whereas above 80 °C, no melting peak was observed as the samples were completely amorphous. To a lesser extent, the inlet air temperature of 230 °C allowed a higher amorphous content of the samples than at 120–170 °C but induced a blow-out of the particles.

Keywords

Inulin Spray drying Glass transition MDSC WAXS ESEM 

Notes

Acknowledgment

We thank Mrs. Lynn Doran for technical assistance, Mrs. Bernadette Norberg and Prof. Johan Wouters from the ‘Department of Structural Biological Chemistry’ of the ‘Facultés universitaires Notre Dame de la Paix’ (Namur, Belgium) for the use of the WAXS, and Mrs. Anne-Sophie Quique from Cosucra Groupe Warcoing S.A. for the HPAEC-PAD experiments.

Financial support was provided for this study by the Walloon Region of Belgium (DGTRE) and Cosucra Groupe Warcoing S.A.

References

  1. 1.
    C. Blecker, C. Fougnies, J.C. Van Herck, J.P. Chevalier and M. Paquot, J Agric Food Chem 50, 1602–1607 (2002).CrossRefGoogle Scholar
  2. 2.
    M.B. Roberfroid and N.M. Delzenne, Annu Rev Nutr 18, 117–143 (1998).CrossRefGoogle Scholar
  3. 3.
    C. Blecker, J.P. Chevalier, J.C. Van Herck, C. Fougnies, C. Deroanne and M. Paquot, Recent Research Developments in Agricultural & Food Chemistry 5, 125–131 (2001).Google Scholar
  4. 4.
    D.E. Oakley, Chem Eng Prog 93, 48–54 (1997).Google Scholar
  5. 5.
    O.C. Chidavaenzi, G. Buckton, F. Koosha and R. Pathak, Int J Pharm 159, 67–74 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Sugimoto, T. Maejima, S. Narisawa, K. Matsubara and H. Yoshino, Int J Pharm 296, 64–72 (2005).CrossRefGoogle Scholar
  7. 7.
    R. Surana, A. Pyne and R. Suryanarayanan, Pharm Res 21, 1167–1176 (2004).CrossRefGoogle Scholar
  8. 8.
    R. Parker and S.G. Ring, J Cereal Sci 34, 1–17 (2001).CrossRefGoogle Scholar
  9. 9.
    J.J. Fitzpatrick, K. Barry, P.S.M. Cerqueira, T. Iqbal, J. O’Neill and Y.H. Roos, Int Dairy J 17, 383–392 (2007).CrossRefGoogle Scholar
  10. 10.
    S.N. Ronkart, M. Paquot, C. Fougnies, C. Deroanne, J.C. Van Herck and C. Blecker, Talanta 70, 1006–1010 (2006).CrossRefGoogle Scholar
  11. 11.
    C. Blecker, J.P. Chevalier, C. Fougnies, J.C. Van Herck, C. Deroanne C. and M. Paquot, J Therm Anal Cal 71, 215–224 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Ronkart, C. Blecker, C. Fougnies, J.C. Van Herck, J. Wouters and M. Paquot, Carbohyd Polym 63, 210–217 (2006).CrossRefGoogle Scholar
  13. 13.
    H. Xu, B. Seyhan Ince and P. Cebe, J Polym Sci Pol Phys 41, 3026–3036 (2003).CrossRefGoogle Scholar
  14. 14.
    E.Y. Shalaev and G. Zografi, The concept of structure in amorphous solids from the perspective of the pharmaceutical sciences. In: Progress in Amorphous Food and Pharmaceutical Systems, edited by H. Levine (Royal Society of Chemistry, Cambridge, UK 2002), pp. 11–30.CrossRefGoogle Scholar
  15. 15.
    E. Verdonck, K. Schaap, L.C. Thomas, Int J Pharm 192, 3–20 (1999).CrossRefGoogle Scholar
  16. 16.
    M. Mathlouthi, A.L. Cholli, and J.L. Koenig, Carbohyd Res 147, 1–9 (1986).CrossRefGoogle Scholar
  17. 17.
    J.F. Mano, J.L. Gómez Ribelles, N.M. Alves and M. Salmerón Sanchez, Polymer 46, 8258–8265 (2005).CrossRefGoogle Scholar
  18. 18.
    Y. Roos and M. Karel, Biotechnol Prog 7, 49–53 (1991).CrossRefGoogle Scholar
  19. 19.
    S.Y Hobbs and C.F. Pratt, Polymer 16, 462–465 (1975).CrossRefGoogle Scholar
  20. 20.
    C. Fougnies, M. Dosière, M.H.J. Koch and J. Roovers, Macromolecules 31, 6266–6274 (1998).CrossRefGoogle Scholar
  21. 21.
    E.M. Woo, Y.S. Sun and C.P. Yang, Prog Polym Sci 26, 945–983 (2001).CrossRefGoogle Scholar
  22. 22.
    J. Plans, W.J. MacKnight and F.E. Karasz, Macromolecules 17, 810–814 (1984).CrossRefGoogle Scholar
  23. 23.
    T Liu, Eur Polym J 39, 1311–1317 (2003).CrossRefGoogle Scholar
  24. 24.
    P. Srimoaon, N. Dangseeyun and P. Supaphol, Eur. Polym. J. 40, 599–608 (2004).CrossRefGoogle Scholar
  25. 25.
    C.L.M. Hébette, J.A. Delcour, M.H.J. Koch, K. Booten, R. Kleppinger, N. Mischenko and H. Reynaers, Carbohyd Res 310, 65–75 (1998).CrossRefGoogle Scholar
  26. 26.
    Hébette C, Crystallisation, melting and gel formation of concentrated inulin-water systems. PhD thesis (K.U. Leuven, Belgium 2002).Google Scholar
  27. 27.
    R.H. Marchessault, T. Bleha, Y. Deslandes and J.F. Revol, Can J Chem 58, 2415–2422 (1980).CrossRefGoogle Scholar
  28. 28.
    I. André, J.L. Putaux, H. Chanzy, F.R. Taravel, J.W. Timmermans and D. de Wit, Int J Biol Macromol 18, 195–204 (1996a).CrossRefGoogle Scholar
  29. 29.
    I. André, K. Mazeau, I. Tvaroska, J.L. Putaux, W.T. Winter, F.R. Taravel and H. Chanzy, Macromolecules 29, 4626–4635 (1996b).CrossRefGoogle Scholar
  30. 30.
    D.O. Corrigan, A.M. Healy and O.I. Corrigan, Int J Pharm 262, 125–137 (2003).CrossRefGoogle Scholar
  31. 31.
    N.R. Rabbani and P.C. Seville, J Control Release 110, 130–140 (2005).CrossRefGoogle Scholar
  32. 32.
    B.H. Graham, Food Austr 49, 184–185 (1997).Google Scholar
  33. 33.
    R.E.M. Verdurmen, P. Menn, J. Ritzert et al., Dry Technol 22, 1403–1461 (2004).CrossRefGoogle Scholar
  34. 34.
    D.F. Bain, D.L. Munday and A. Smith, J Microencapsul 16, 453–474 (1999).CrossRefGoogle Scholar
  35. 35.
    F. Iskandar, L. Gradon and K. Okuyama, J Colloid Interf Sci 265, 296–303 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sébastien N. Ronkart
    • 1
    • 2
    Email author
  • Claude Deroanne
    • 1
  • Michel Paquot
    • 2
  • Christian Fougnies
    • 3
  • Jean-Christophe Lambrechts
    • 4
  • Christophe S. Blecker
    • 1
  1. 1.Department of Food TechnologyGembloux Agricultural UniversityGemblouxBelgium
  2. 2.Department of Industrial Biological ChemistryGembloux Agricultural UniversityGemblouxBelgium
  3. 3.Cosucra Groupe Warcoing S.A.WarcoingBelgium
  4. 4.CERTECHAnalytical Sciences—MicroscopySeneffeBelgium

Personalised recommendations