Food Biophysics

, Volume 2, Issue 1, pp 1–9 | Cite as

Characterization of Antimicrobial-bearing Liposomes by ζ-Potential, Vesicle Size, and Encapsulation Efficiency

  • T. Matthew Taylor
  • Sylvia Gaysinsky
  • P. Michael Davidson
  • Barry D. Bruce
  • Jochen Weiss


Liposome entrapment may improve activity of protein or polypeptide antimicrobials against a variety of microorganisms. In this study, ability of liposomes to withstand exposure to environmental and chemical stresses typically encountered in foods and food processing operations were tested. Liposomes consisting of distearoylphosphatidylcholine (PC) and distearoylphosphatidylglycerol (PG), with 0, 5, or 10 μg/ml of the antimicrobial peptide nisin entrapped, were exposed to elevated temperatures (25–75 °C) and a range of pH (5.5–11.0). Ability of liposomes to maintain integrity was assessed by measuring the encapsulation efficiency (EE), ζ-potential, and particle size distribution of liposomes. Distearoylphosphatidylcholine, PC/PG 8:2, and PC/PG 6:4 (mole fraction) liposomes retained between ~70–90% EE despite exposure to elevated temperature and alkaline or acidic pH. Particle size of liposomes averaged between 100 and 240 nm depending on liposome preparation. Liposomal surface charge depended primarily on phospholipid composition and changed little with inclusion of nisin. Surface charge was not affected by temperature for PC and PC/PG 8:2 but decreased for PC/PG 6:4 liposomes. Our results suggest that liposomes containing nisin may be suitable for use as antimicrobial-active ingredients in low- or high-pH foods subjected to moderate heat treatments.


Liposomes Nisin Antimicrobials pH Temperature Stability Zeta-potential 



This research was financially supported by a USDA NRI grant (USDA NRI 2004-35201-15358) and the Massachusetts and Tennessee Experiment Station (Hatch MAS 00911 and TEN 00263).


  1. 1.
    S.S. Chrai, R. Murari and I. Ahmad, Biopharm-Appl T Bio 15, 40 (2002).Google Scholar
  2. 2.
    R.L. Juliano, Trends Pharmacol Sci 2, 39 (1981).CrossRefGoogle Scholar
  3. 3.
    T.M. Allen and L.G. Cleland, Biochim Biophys Acta 597, 418 (1980).CrossRefGoogle Scholar
  4. 4.
    M.C. Taira, N.S. Chiaramoni, K.M. Pecuch and S. Alonso-Romanowski, Drug Deliv 11, 123 (2004).CrossRefGoogle Scholar
  5. 5.
    K. Makino, T. Yamada, M. Kimura, T. Oka, H. Ohshima and T. Kondo, Biophys Chemist 41, 175 (1991).CrossRefGoogle Scholar
  6. 6.
    R.R.C. New, In: Liposomes: A Practical Approach, edited by R.R.C. New (Oxford University Press, New York, NY 1990), p. 33.Google Scholar
  7. 7.
    J.C. Shah, Y. Sadhale and D.M. Chilukuri, Adv Drug Deliv Rev 47, 229 (2001).CrossRefGoogle Scholar
  8. 8.
    J. Lasch, V. Weissig and M. Brandl, In: Liposomes: A Practical Approach, edited by V.P. Torchilin and V. Weissig (Oxford University Press, New York, NY 2003), p. 3.Google Scholar
  9. 9.
    T.M. Taylor, P.M. Davidson, B.D. Bruce and J. Weiss, J Agric Food Chem 53, 8722 (2005).CrossRefGoogle Scholar
  10. 10.
    B.F. Gibbs, S. Kermasha, I. Alli and C.N. Mulligan, Int J Food Sci Nutr 50, 213 (1999).Google Scholar
  11. 11.
    R.-O. Benech, E.E. Kheadr, R. Laridi, C. Lacroix and I. Fliss, Appl Environ Microbiol 68, 3683 (2002).CrossRefGoogle Scholar
  12. 12.
    R.-O. Benech, E.E. Kheadr, C. Lacroix and I. Fliss, Appl Environ Microbiol 68, 5607 (2002).CrossRefGoogle Scholar
  13. 13.
    L.M. Were, B. Bruce, P.M. Davidson and J. Weiss, J Food Prot 67, 922 (2004).Google Scholar
  14. 14.
    L.M. Were, B.D. Bruce, P.M. Davidson and J. Weiss, J Agric Food Chem 51, 8073 (2003).CrossRefGoogle Scholar
  15. 15.
    J.M. Jay, M.J. Loessner and D.A. Golden, Modern Food Microbiology (Springer, New York, NY 2005), p. 301.Google Scholar
  16. 16.
    E.A. Johnson and A.E. Larson, In: Antimicrobials in Foods, edited by P.M. Davidson, J.N. Sofos and A.L. Branen (CRC Press, New York, NY 2005), p. 361.Google Scholar
  17. 17.
    J.S. Boland, P.M. Davidson, B. Bruce and J. Weiss, J Food Prot 67, 285 (2004).Google Scholar
  18. 18.
    J.K. Branen and P.M. Davidson, Int J Food Microbiol 90, 63 (2004).CrossRefGoogle Scholar
  19. 19.
    D.-S. Jung, F.W. Bodyfelt and M.A. Daeschel, J Dairy Sci 75, 387 (1992).CrossRefGoogle Scholar
  20. 20.
    L.V. Thomas and J. Delves-Broughton, In: Antimicrobials in Food, edited by P.M. Davidson, J.N. Sofos and A.L. Branen (CRC Press, New York, NY 2005), p. 237.Google Scholar
  21. 21.
    J. Delves-Broughton, Food Technol 44, 110 (1990).Google Scholar
  22. 22.
    P. Pinnaduwage and B.D. Bruce, J Biol Chem 271, 32907 (1996).CrossRefGoogle Scholar
  23. 23.
    J. Tramer and G.G. Fowler, J Sci Food Agric 15, 522–528 (1964).CrossRefGoogle Scholar
  24. 24.
    Y.-F. Hsieh, T.-L. Chen, Y.-T. Wang, J.-H. Chang and H.-M. Chang, J Food Sci 67, 2808 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Kitano, Y. Akatsuka and N. Ise, Macromolecules 24, 42 (1991).CrossRefGoogle Scholar
  26. 26.
    Y.P. Zhang, R.N. Lewis and R.N. McElhaney, Biophys J 72, 779 (1997).Google Scholar
  27. 27.
    E.J. Findlay and P.G. Barton, Biochemistry 17, 2400 (1978).CrossRefGoogle Scholar
  28. 28.
    T. Taylor, P.M. Davidson, B. Bruce and J. Weiss, Crit Rev Food Sci Nutr 45, 587 (2005).CrossRefGoogle Scholar
  29. 29.
    D.J. McClements, Food Emulsions: Principles, Practices, and Techniques (CRC Press, Boca Raton, FL 2005).Google Scholar
  30. 30.
    R. Willumeit, M. Kumpugdee, S.S. Funari, K. Lohner, B.P. Navas, K. Brandenburg, S. Linser and J. Andra, Biochim Biophys Acta 1669, 125 (2005).CrossRefGoogle Scholar
  31. 31.
    Y.-Z. Huang, J.-Q. Gao, W.-Q. Liang and S. Nakagawa, Biol Pharm Bull 28, 387 (2005).CrossRefGoogle Scholar
  32. 32.
    R.M. Straubinger, N. Duzgunes and D. Papahadjopoulos, FEBS Lett 179, 148 (1985).CrossRefGoogle Scholar
  33. 33.
    S.-C. Lee, H.-G. Yuk, D.-H. Lee, K.-E. Lee, Y.-I. Ludescher and R.D. Ludescher, J Biochem Mol Biol 35, 358 (2002).Google Scholar
  34. 34.
    R. El-Jastimi, K. Edwards and M. Lafleur, Biophys J 77, 842 (1999).Google Scholar
  35. 35.
    F.H. Gao, T. Abee and W.N. Konings, Appl Environ Microbiol 57, 2164 (1991).Google Scholar
  36. 36.
    C. Van Kraau, E. Breukink, H.S. Rollema, R. Siezen, R.A. Demel, B. De Kruijkk and O.P. Kuipers, Eur J Biochem 247, 114 (1997).CrossRefGoogle Scholar
  37. 37.
    A.J.M. Driessen, H.W. van den Hooven, W. Kuiper, M. van de Kamp, H.-G. Sahl, R.N.H. Konings and W.N. Konings, Biochemistry 34, 1606 (1995).CrossRefGoogle Scholar
  38. 38.
    E. Breukink and B. de Kruijff, Biochim Biophys Acta 1462, 223 (1999).CrossRefGoogle Scholar
  39. 39.
    W. Liu and J.N. Hansen, Appl Environ Microbiol 56, 2551 (1990).Google Scholar
  40. 40.
    E. Breukink, P. Ganz, B. De Kruijff and J. Seelig, Biochemistry 39, 10247 (2000).CrossRefGoogle Scholar
  41. 41.
    J.R. Wiener, R.R. Wagner and E. Freire, Biochemistry 22, 6117 (1983).CrossRefGoogle Scholar
  42. 42.
    G. Yohannes, K.-H. Pystynen, M.-L. Riekkola and S.K. Wiedmer, Anal Chim Acta 560, 50–56 (2006).CrossRefGoogle Scholar
  43. 43.
    R. Laridi, E.E. Kheadr, R.-O. Benech, J.C. Vuillemard, C. Lacroix and I. Fliss, Int Dairy J 13, 325 (2003).CrossRefGoogle Scholar
  44. 44.
    T.M. Bayerl and M. Bloom, Biophys J 58, 357 (1990).CrossRefGoogle Scholar
  45. 45.
    D.B. Fenske and P.R. Cullis, Biophys J 64, 1482 (1993).Google Scholar
  46. 46.
    B.B. Bonev, W.C. Chan, B.W. Bycroft, G.C.K. Roberts and A. Watts, Biochemistry 39, 11425 (2000).CrossRefGoogle Scholar
  47. 47.
    R. El-Jastimi and M. Lafleur, Biochim Biophys Acta 1324, 151 (1997).CrossRefGoogle Scholar
  48. 48.
    R. El-Jastimi and M. Lafleur, Biochim Biophys Acta 1418, 97 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • T. Matthew Taylor
    • 1
  • Sylvia Gaysinsky
    • 4
  • P. Michael Davidson
    • 2
  • Barry D. Bruce
    • 3
  • Jochen Weiss
    • 4
  1. 1.Animal Science DepartmentTexas A&M UniversityCollege StationUSA
  2. 2.Department of Food Science and TechnologyThe University of TennesseeKnoxvilleUSA
  3. 3.Department of Biochemistry, Cellular, and Molecular BiologyThe University of TennesseeKnoxvilleUSA
  4. 4.Department of Food ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations