Food Biophysics

, Volume 1, Issue 4, pp 202–215

Calorimetric and Microstructural Investigation of Frozen Hydrated Gluten

Article

Abstract

The thermal and microstructural properties of frozen hydrated gluten were studied by using differential scanning calorimetry (DSC), modulated DSC, and low-temperature scanning electron microscopy (cryo-SEM). This work was undertaken to investigate the thermal transitions observed in frozen hydrated gluten and relate them to its microstructure. The minor peak that is observed just before the major endotherm (melting of bulk ice) was assigned to the melting of ice that is confined to capillaries formed by gluten. The Defay–Prigogine theory for the depression of melting point of fluids confined in capillaries was put forward in order to explain the calorimetric results. The pore radius size of the capillaries was calculated by using four different empirical models. Kinetic analysis of the growth of the pore radius size revealed that it follows first-order kinetics. Cryo-SEM observations revealed that gluten forms a continuous homogeneous and not fibrous network. Results of the present investigation showed that is impossible to assign a Tg value for hydrated frozen gluten because of the wide temperature range over which the gluten matrix vitrifies, and therefore the construction of state diagrams is not feasible at subzero temperatures for this material. Furthermore, the gluten matrix is deteriorated with two different mechanisms from ice recrystallization, one that results from the growth of ice that is confined in capillaries and the other from the growth of bulk ice.

Keywords

Differential scanning calorimetry Frozen dough Cryo-scanning electron microscopy Gluten Recrystallization Microstructure Capillary Porosimetry Thermoporometry 

References

  1. 1.
    P.D. Ribotta, A.E. Leon and M.C. Anon, Cereal Chem 80, 454 (2003).Google Scholar
  2. 2.
    P.D. Ribotta, A.E. Leon and M.C. Anon, J Agric Food Chem 49, 913 (2001).CrossRefGoogle Scholar
  3. 3.
    P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Chem 68, 105 (1991).Google Scholar
  4. 4.
    Y. Inoue and W. Bushuk, Cereal Chem 68, 627 (1991).Google Scholar
  5. 5.
    Y. Inoue, H.D. Sapirstein, S. Takayanagi and W. Bushuk, Cereal Chem 71, 118 (1994).Google Scholar
  6. 6.
    Y. Inoue and W. Bushuk, Cereal Chem 69, 423 (1992).Google Scholar
  7. 7.
    K. Autio and E. Sinda, Cereal Chem 69, 409 (1992).Google Scholar
  8. 8.
    A. Baier-Schenk, S. Handschin and B. Conde-Petit, Cereal Chem 82, 251 (2005).Google Scholar
  9. 9.
    A. Bot, Cereal Chem 80, 366 (2003).Google Scholar
  10. 10.
    T.J. Laaksonen and Y.H. Roos, J Cereal Sci 32, 281 (2000).CrossRefGoogle Scholar
  11. 11.
    J. Rasanen, J.M.V. Blanshard, J.R. Mitchell, W. Derbyshire and K. Autio, J Cereal Sci 28, 1 (1998).CrossRefGoogle Scholar
  12. 12.
    G.P. Johari, J Phys Chem B 101, 6780 (1997).CrossRefGoogle Scholar
  13. 13.
    G.P. Johari and G. Sartor, J Chem Soc Faraday Trans 93, 2609 (1997).CrossRefGoogle Scholar
  14. 14.
    G. Sartor and G.P. Johari, J Phys Chem B 101, 6791 (1997).CrossRefGoogle Scholar
  15. 15.
    G. Sartor and G.P. Johari, J Phys Chem B 101, 6575 (1997).CrossRefGoogle Scholar
  16. 16.
    G. Sartor, E. Mayer and G.P. Johari, Biophys J 66, 249 (1994).CrossRefGoogle Scholar
  17. 17.
    M.-S. Rahman, Trends Food Sci Technol 17, 129 (2006).CrossRefGoogle Scholar
  18. 18.
    J.L. Kokini, A.M. Cocero, H. Madeka and E. Degraaf, Trends Food Sci Technol 5, 281 (1994).CrossRefGoogle Scholar
  19. 19.
    R. Lasztity, The Chemistry of Cereal Proteins, 2nd ed. (CRC Press, Boca Raton, FL 1996), p. 328.Google Scholar
  20. 20.
    J.D. Schofield, Flour proteins: structure and functionality in baked products. In: Chemistry and Physics of Baking, edited by J.M.V. Blanshard, P.J. Frazier and T. Galliard (Royal Society of Chemistry, London 1986).Google Scholar
  21. 21.
    P.S. Belton, J Cereal Sci 41, 203 (2005).CrossRefGoogle Scholar
  22. 22.
    B.J. Dobraszczyk and M. Morgenstern, J Cereal Sci 38, 229 (2003).CrossRefGoogle Scholar
  23. 23.
    H. Singh and F. MacRitchie, J Cereal Sci 33, 231 (2001).CrossRefGoogle Scholar
  24. 24.
    T. Amend and H.D. Belitz, Z Lebensm -Unters Forsch 190, 401 (1990).CrossRefGoogle Scholar
  25. 25.
    T. Amend, H.D. Belitz, R. Moss and P. Resmini, Food Struct 10, 277 (1991).Google Scholar
  26. 26.
    O. Paredeslopez and W. Bushuk, Cereal Chem 60, 24 (1983).Google Scholar
  27. 27.
    P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Foods World 33, 675 (1988).Google Scholar
  28. 28.
    P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Chem 67, 139 (1990).Google Scholar
  29. 29.
    E. Esselink, H. van Aalst, M. Maliepaard, T.M.H. Henderson, N.L.L. Hoekstra and J. van Duynhoven, Cereal Chem 80, 419 (2003).Google Scholar
  30. 30.
    S. Zounis, K.J. Quail, M. Wootton and M.R. Dickson, J Cereal Sci 36, 135 (2002).CrossRefGoogle Scholar
  31. 31.
    S. Zounis, K.J. Quail, M. Wootton and M.R. Dickson, J Cereal Sci 35, 135 (2002).CrossRefGoogle Scholar
  32. 32.
    A. Baier-Schenk, S. Handschin, M. von Schonau, A.G. Bittermann, T. Bachi and B. Conde-Petit, J Cereal Sci 42, 255 (2005).CrossRefGoogle Scholar
  33. 33.
    M.B. Durrenberger, S. Handschin, B. Conde-Petit and F. Escher, Lebensm-Wiss Technol 34, 11 (2001).CrossRefGoogle Scholar
  34. 34.
    W. Li, B.J. Dobraszczyk and P.J. Wilde, J Cereal Sci 39, 403 (2004).CrossRefGoogle Scholar
  35. 35.
    I.C. Bache and A.M. Donald, J Cereal Sci 28, 127 (1998).CrossRefGoogle Scholar
  36. 36.
    A.D. Roman-Gutierrez, S. Guilbert and B. Cuq, Lebensm-Wiss Technol 35, 730 (2002).CrossRefGoogle Scholar
  37. 37.
    F. Romm, Microporous Media (Marcel Dekker, New York 2004).Google Scholar
  38. 38.
    R. Defay and I. Prigogine, Surface Tension and Adsorption (Longmans, London 1966).Google Scholar
  39. 39.
    J.E.K. Schawe, Thermochim Acta 304305, 111 (1997).CrossRefGoogle Scholar
  40. 40.
    N.J. Coleman and D.Q.M. Craig, Int J Pharm 135, 13 (1996).CrossRefGoogle Scholar
  41. 41.
    M. Reading, A. Luget and R. Wilson, Thermochim Acta 238, 295 (1994).CrossRefGoogle Scholar
  42. 42.
    J.E.K. Schawe, Thermochim Acta 261, 183 (1995).CrossRefGoogle Scholar
  43. 43.
    Y. Kraftmakher, Modulation Calorimetry, Theory and Applications (Springer, Berlin 2004).Google Scholar
  44. 44.
    G.P. Johari, Chem Phys 258, 277 (2000).CrossRefGoogle Scholar
  45. 45.
    S. Brawer, Relaxation in Viscous Liquids and Glasses: Review of Phenomenology, Molecular Dynamics Simulations, and Theoretical Treatment (American Ceramic Society, Columbus, OH 1985).Google Scholar
  46. 46.
    T.J. Laaksonen and Y.H. Roos, J Cereal Sci 33, 331 (2001).CrossRefGoogle Scholar
  47. 47.
    C. Faivre, D. Bellet and G. Dolino, Eur Phys J B 7, 19 (1999).CrossRefGoogle Scholar
  48. 48.
    M. Iza, S. Woerly, C. Danumah, S. Kaliaguine and M. Bousmina, Polymer 41, 5885 (2000).CrossRefGoogle Scholar
  49. 49.
    A. Ksiazczak, A. Radomski and T. Zielenkiewicz, J Therm Anal Calorim 74, 559 (2003).CrossRefGoogle Scholar
  50. 50.
    M.R. Landry, Thermochim Acta 433, 27 (2005).CrossRefGoogle Scholar
  51. 51.
    T. Yamamoto, A. Endo, Y. Inagi, T. Ohmori and M. Nakaiwa, J Colloid Interface Sci 284, 614 (2005).CrossRefGoogle Scholar
  52. 52.
    C.Y. Yortsos and K.A. Stubos, Curr Opin Colloid Interface Sci 6, 208 (2001).CrossRefGoogle Scholar
  53. 53.
    J.N. Hay and P.R. Laity, Polymer 41, 6171 (2000).CrossRefGoogle Scholar
  54. 54.
    C. Jallut, J. Lenoir, C. Bardot and C. Eyraud, J Membr Sci 68, 271 (1992).CrossRefGoogle Scholar
  55. 55.
    D. Morineau, G. Dosseh, C. Alba-Simionesco and P. Llewellyn, Philos Mag B 79, 1847 (1999).CrossRefGoogle Scholar
  56. 56.
    R. Neffati, L. Apekis and J. Rault, J Therm Anal Calorim 54, 741 (1998).CrossRefGoogle Scholar
  57. 57.
    M. Sliwinska-Bartowiak, J. Gras, R. Sikorski, R. Radhakrishnan, L. Gelb and E.K. Gubbins, Langmuir 15, 6060 (1999).CrossRefGoogle Scholar
  58. 58.
    K.M. Unruh, T.E. Huber and C.A. Huber, Phys Rev B Condens Matter 48, 9021 (1993).Google Scholar
  59. 59.
    M. Wulff, Thermochim Acta 419, 291 (2004).CrossRefGoogle Scholar
  60. 60.
    N.V. Churaev, S.A. Bardasov and V.D. Sobolev, Colloids Surf A Physicochem Eng Asp 79, 11 (1993).CrossRefGoogle Scholar
  61. 61.
    R. Denoyel and R.J.M. Pellenq, Langmuir 18, 2710 (2002).CrossRefGoogle Scholar
  62. 62.
    E.F.J. Esselink, H. van Aalst, M. Maliepaard and J.P.M. van Duynhoven, Cereal Chem 80, 396 (2003).Google Scholar
  63. 63.
    O. Coussy, J Mech Phys Solids 53, 1689 (2005).CrossRefGoogle Scholar
  64. 64.
    M. Brun, A. Lallemand, J.-F. Quinson and C. Eyraud, Thermochim Acta 21, 59 (1977).CrossRefGoogle Scholar
  65. 65.
    G.W. Scherer, J Non-Cryst Solids 155, 1 (1993).CrossRefGoogle Scholar
  66. 66.
    G.W. Scherer, Cem Concr Res 29, 1347 (1999).CrossRefGoogle Scholar
  67. 67.
    K. Ishikiriyama and M. Todoki, J Colloid Interface Sci 171, 103 (1995).CrossRefGoogle Scholar
  68. 68.
    K. Ishikiriyama, M. Todoki and K. Motomura, J Colloid Interface Sci 171, 92 (1995).CrossRefGoogle Scholar
  69. 69.
    G. Cojazzi and M. Pizzoli, Macromol Phys Chem 200, 2356 (1999).CrossRefGoogle Scholar
  70. 70.
    K.G. Rennie and J. Clifford, Faraday Trans I 73, 680 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations