Food Biophysics

, Volume 1, Issue 1, pp 21–29

Influence of Interfacial Composition on in Vitro Digestibility of Emulsified Lipids: Potential Mechanism for Chitosan's Ability to Inhibit Fat Digestion

  • Saehun Mun
  • Eric A. Decker
  • Yeonhwa Park
  • Jochen Weiss
  • D. Julian McClements
Original Research


The objective of this study was to investigate the influence of interfacial composition and electrical charge on the in vitro digestion of emulsified fats by pancreatic lipase. An electrostatic layer-by-layer deposition technique was used to prepare corn oil-in-water emulsions (3 wt% oil) that contained droplets coated by (1) lecithin, (2) lecithin–chitosan, or (3) lecithin–chitosan–pectin. Pancreatic lipase (1.6 mg mL−1) and/or bile extract (5.0 mg mL−1) were added to each emulsion, and the particle charge, droplet aggregation, and free fatty acids released were measured. In the presence of bile extract, the amount of fatty acids released per unit amount of emulsion was much lower in the emulsions containing droplets coated by lecithin–chitosan (38 ± 16 μmol mL−1) than those containing droplets coated by lecithin (250 ± 70 μmol mL−1) or lecithin–chitosan–pectin (274 ± 80 μmol mL−1). In addition, there was much more extensive droplet aggregation in the lecithin–chitosan emulsion than in the other two emulsions. We postulated that lipase activity was reduced in the lecithin–chitosan emulsion as a result of the formation of a relatively thick cationic layer around each droplet, as well as the formation of large flocs, which restricted the access of the pancreatic lipase to the lipids within the droplets. Our results also suggest that droplets initially coated by a lecithin–chitosan–pectin layer did not inhibit lipase activity, which may have been because the chitosan–pectin desorbed from the droplet surfaces thereby allowing the enzyme to reach the lipids; however, further work is needed to establish this. This information could be used to create food emulsions with low caloric level, or to optimize diets for individuals with lipid digestion problems.


Emulsions Interfacial properties Pancreatic lipase Bile extract Chitosan Activity of lipase 


  1. 1.
    D.J. McClements, Food Emulsions: Principles, Practice and Techniques (CRC Press, Boca Raton 2004).Google Scholar
  2. 2.
    D. Lairon, Eur J Clin Nutr 50, 125 (1996).Google Scholar
  3. 3.
    G.A. Van Aken, Coalescence mechanisms in protien-stabilized emulsion, In: Food Emulsions, edited by S. Friberg, K. Larsson and J. Sjoblom (Marcel Dekker, New York, NY 2004), 4th ed, chap 8.Google Scholar
  4. 4.
    M. Armand, P. Borel, C. Dubois, M. Senft, J. Peyrot, J. Salducci, H. Lafont and D. Lairon, Am J Physiol 266, G372 (1994).Google Scholar
  5. 5.
    M. Armand, B. Pasquier, M. Andre, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan and D. Lairon, Am J Clin Nutr 70, 1096 (1999).Google Scholar
  6. 6.
    H.L. Brockman, Biochimie 82, 987 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Armand, P. Borel, P. Ythier, G. Dutot, M. Melin, H. Senft, H. Lafont and D. Lairon, J Nutr Biochem 3, 333 (1992).CrossRefGoogle Scholar
  8. 8.
    H. Mu and C.-E. Høy, Prog Lipid Res 43, 105 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Labourdenne, O. Brass, M. Ivanova, A. Cagna and G. Verger, Biochemistry 36, 3423 (1997).CrossRefGoogle Scholar
  10. 10.
    C. Chapus, M. Rovery, L. Sarda and R. Verger, Biochimie 70, 1223 (1988).CrossRefGoogle Scholar
  11. 11.
    M. Wickham, M. Garrood, J. Leney, P.D.G. Wilson and A. Fillery-Travis, J Lipid Res. 39, 623 (1998).Google Scholar
  12. 12.
    L.-K. Han, Y. Kimura and H. Okuda, Int J Obes 23, 174 (1999).CrossRefGoogle Scholar
  13. 13.
    C.M. Gallaher, J. Munion, R. Hasslink, J. Wise and D.D. Gallaher, J Nutr 130, 2753 (2000).Google Scholar
  14. 14.
    S. Kobayashi, Y. Terashima and H. Itoh, Br Poult Sci 43, 270 (2002).CrossRefGoogle Scholar
  15. 15.
    M. Sugano, S. Watanabe, A. Kishi, M. Izume and A. Ohtakara, Lipids 23, 187 (1998).CrossRefGoogle Scholar
  16. 16.
    P. Faldt, B. Bergenstahl and P.M. Claesson, Colloids Surf A 71, 187 (1993).CrossRefGoogle Scholar
  17. 17.
    C. Peniche, W. Aruelles-Monal, H. Peniche and N. Acosta, Macromol Biosci 3, 511 (2003).CrossRefGoogle Scholar
  18. 18.
    S. Ogawa, E.A. Decker and D.J. McClements, J Agric Food Chem 51, 2806 (2003).CrossRefGoogle Scholar
  19. 19.
    S. Ogawa, E.A. Decker and D.J. McClements, J Agric Food Chem 52, 3595 (2004).CrossRefGoogle Scholar
  20. 20.
    D.A. Garrett, M.L. Failla and R.J. Sarama, J Agric Food Chem 47, 4301 (1999).CrossRefGoogle Scholar
  21. 21.
    N. Saisuburamaniyan, L. Krithika, K.P. Dileena, S. Sivasubramanian and R. Puvanakrishnan, Anal Biochem 330, 70 (2004).CrossRefGoogle Scholar
  22. 22.
    A. Lykidis, A. Antonis and P. Arzoglou, Comp Biochem Physiol B 116, 51 (1997).CrossRefGoogle Scholar
  23. 23.
    A. Tavridou, A. Avranas and P. Arzoglou, Biochem Biophys Res Commun 186, 746 (1992).CrossRefGoogle Scholar
  24. 24.
    F. Shahidi, J.K.V. Arachchi and Y.J. Jeon, Trends Food Sci Technol 10, 37 (1999).CrossRefGoogle Scholar
  25. 25.
    G. Skjak-Braek, T. Anthonsen and P. Sandford, Chtin and Chitosan (Elsevier, London, 1989).Google Scholar
  26. 26.
    M.S. Rodriguez, L.A. Albertengo, I. Vitale and E. Agullo, JFood Sci 68, 665 (2003).CrossRefGoogle Scholar
  27. 27.
    T. Aoki, E.A. Decker and D.J. McClements, Food Hydrocoll 19, 209 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Saehun Mun
    • 1
  • Eric A. Decker
    • 1
  • Yeonhwa Park
    • 1
  • Jochen Weiss
    • 1
  • D. Julian McClements
    • 1
    • 2
  1. 1.Biopolymers and Colloids Research Laboratory, Department of Food ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Department of Food ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations