Advertisement

Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease

  • S. M. Matt
  • P. J. GaskillEmail author
INVITED REVIEW

Abstract

Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson’s disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling.

Graphical Abstract

Keywords

Dopamine Catecholamine Neuroimmunology Drug abuse Immunopharmacology Neuropathogenesis 

Notes

Acknowledgements

We would like to state our tremendous appreciation to all the members of the Gaskill laboratory and the department of Pharmacology and Physiology for their insights and critical feedback during the preparation of this manuscript. This work was supported by a grant from the National Institutes of Drug Abuse, DA039005 (PJG), as well as support from the Drexel University College of Medicine.

References

  1. Abe M, Iwaoka M, Nakamura T, Kitta Y, Takano H, Kodama Y, Kawabata K, Obata JE, Mende A, Kobayashi T, Fujioka D, Saito Y, Hasebe H, Kugiyama K (2007) Association of high levels of plasma free dopamine with future coronary events in patients with coronary artery disease. Circ J 71:688–692CrossRefPubMedGoogle Scholar
  2. Adachi S, Endo Y, Mizushige T, Tsuzuki S, Matsumura S, Inoue K, Fushiki T (2013) Increased levels of extracellular dopamine in the nucleus accumbens and amygdala of rats by ingesting a low concentration of a long-chain. Fatty Acid Bioscience, biotechnology, and biochemistry 77:2175–2180.  https://doi.org/10.1271/bbb.130234 CrossRefPubMedGoogle Scholar
  3. Adir Y, Azzam ZS, Lecuona E, Leal S, Pesce L, Dumasius V, Bertorello AM, Factor P, Young JB, Ridge KM, Sznajder JI (2004) Augmentation of endogenous dopamine production increases lung liquid clearance. Am J Respir Crit Care Med 169:757–763.  https://doi.org/10.1164/rccm.200207-744OC CrossRefPubMedGoogle Scholar
  4. Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159.  https://doi.org/10.1016/j.brainresrev.2010.03.003 CrossRefPubMedGoogle Scholar
  5. Airavaara M, Planken A, Gäddnäs H, Piepponen TP, Saarma M, Ahtee L (2004) Increased extracellular dopamine concentrations and FosB/ΔFosB expression in striatal brain areas of heterozygous GDNF knockout mice. Eur J Neurosci 20:2336–2344.  https://doi.org/10.1111/j.1460-9568.2004.03700.x CrossRefPubMedGoogle Scholar
  6. Alaniz RC, Thomas SA, Perez-Melgosa M, Mueller K, Farr AG, Palmiter RD, Wilson CB (1999) Dopamine β-hydroxylase deficiency impairs cellular immunity. Proc Natl Acad Sci 96:2274–2278.  https://doi.org/10.1073/pnas.96.5.2274 CrossRefPubMedGoogle Scholar
  7. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295.  https://doi.org/10.1523/jneurosci.0976-10.2010 CrossRefPubMedGoogle Scholar
  8. Almaraz L, Teresa Pérez-García M, González C (1991) Presence of D1 receptors in the rabbit carotid body. Neurosci Lett 132:259–262.  https://doi.org/10.1016/0304-3940(91)90315-K CrossRefPubMedGoogle Scholar
  9. Ambade V, Arora MM, Singh P, Somani BL, Basannar D (2009) Adrenaline, noradrenaline and dopamine level estimation in depression : does it help? Medical journal, Armed Forces India 65:216–220.  https://doi.org/10.1016/S0377-1237(09)80006-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Amenta F, Barili P, Bronzetti E, Felici L, Mignini F, Ricci A (2000) Localization of dopamine receptor subtypes in systemic arteries. Clinical and experimental hypertension (New York, NY : 1993) 22:277-288Google Scholar
  11. Amino T, Uchihara T, Tsunekawa H, Takahata K, Shimazu S, Mizusawa H, Orimo S (2008) Myocardial nerve fibers are preserved in MPTP-treated mice, despite cardiac sympathetic dysfunction. Neurosci Res 60:314–318.  https://doi.org/10.1016/j.neures.2007.11.011 CrossRefPubMedGoogle Scholar
  12. Anagnostakis Y, Spyraki C (1994) Effect of morphine applied by intrapallidal microdialysis on the release of dopamine in the nucleus accumbens. Brain Res Bull 34:275–282.  https://doi.org/10.1016/0361-9230(94)90064-7 CrossRefPubMedGoogle Scholar
  13. Andersen AD, Blaabjerg M, Binzer M, Kamal A, Thagesen H, Kjaer TW, Stenager E, Gramsbergen JBP (2017) Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: effect of l-DOPA treatment and changes in levodopa-induced dyskinesia. J Neurochem 141:614–625.  https://doi.org/10.1111/jnc.13997 CrossRefPubMedGoogle Scholar
  14. Antunes IF, Doorduin J, Haisma HJ, Elsinga PH, van Waarde A, Willemsen ATM, Dierckx RA, de Vries EFJ (2012) 18F-FEAnGA for PET of beta-glucuronidase activity in neuroinflammation. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 53:451–458.  https://doi.org/10.2967/jnumed.111.096388 CrossRefGoogle Scholar
  15. Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30:62–69.  https://doi.org/10.1016/j.tins.2006.12.003 CrossRefPubMedGoogle Scholar
  16. Arreola R, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garcés-Alvarez ME, de la Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabián S, Pavón L (2016) Immunomodulatory effects mediated by dopamine. J Immunol Res 2016:3160486–3160431.  https://doi.org/10.1155/2016/3160486 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Arvidsson E, Viereckel T, Mikulovic S, Wallén-Mackenzie Å (2014) Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 9:e99592.  https://doi.org/10.1371/journal.pone.0099592 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295.  https://doi.org/10.1152/ajpgi.00341.2012 CrossRefPubMedGoogle Scholar
  19. Aviado DM, Sadavongvivad C (1970) Pharmacological significance of biogenic amines in the lungs: noradrenaline and dopamine. Br J Pharmacol 38:374–385CrossRefPubMedPubMedCentralGoogle Scholar
  20. Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993) Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 43:2099–2104CrossRefPubMedGoogle Scholar
  21. Bairam A, Frenette J, Dauphin C, Carroll JL, Khandjian EW (1998) Expression of dopamine D1-receptor mRNA in the carotid body of adult rabbits, cats and rats. Neurosci Res 31:147–154CrossRefPubMedGoogle Scholar
  22. Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Mol Brain Res 23:204–212.  https://doi.org/10.1016/0169-328X(94)90227-5 CrossRefPubMedGoogle Scholar
  23. Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Muszynska A, Przybyłkowski A, Członkowska A, Członkowski A (2007) MPTP-induced central dopamine depletion exacerbates experimental autoimmune encephalomyelitis (EAE) in C57BL mice. Inflamm Res 56:311–317.  https://doi.org/10.1007/s00011-007-6128-0 CrossRefPubMedGoogle Scholar
  24. Barbanti P, Fabbrini G, Ricci A, Cerbo R, Bronzetti E, Caronti B, Calderaro C, Felici L, Stocchi F, Meco G, Amenta F, Lenzi GL (1999) Increased expression of dopamine receptors on lymphocytes in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 14:764–771CrossRefGoogle Scholar
  25. Barcia C (2013) Glial-mediated inflammation underlying parkinsonism. Scientifica 2013:357805–357805.  https://doi.org/10.1155/2013/357805 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Barnard ML et al (1999) Stimulation of the dopamine 1 receptor increases lung edema clearance. Am J Respir Crit Care Med 160:982–986.  https://doi.org/10.1164/ajrccm.160.3.9812003 CrossRefPubMedGoogle Scholar
  27. Basson H, Bairam A, Cottet-Emard JM, Pequignot JM, Marchal F (1997) Carotid body dopamine content and release by short-term hypoxia: effect of haloperidol and alpha methyl paratyrosine. Arch Physiol Biochem 105:3–9.  https://doi.org/10.1076/apab.105.1.3.13145 CrossRefPubMedGoogle Scholar
  28. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124CrossRefPubMedGoogle Scholar
  29. Basu S, Dasgupta PS, Lahiri T, Chowdhury JR (1993) Uptake and biodistribution of dopamine in bone marrow, spleen and lymph nodes of normal and tumor bearing mice. Life Sci 53:415–424CrossRefPubMedGoogle Scholar
  30. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217.  https://doi.org/10.1124/pr.110.002642 CrossRefPubMedGoogle Scholar
  31. Beaulieu J-M, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR review 13. Br J Pharmacol 172:1–23.  https://doi.org/10.1111/bph.12906 CrossRefPubMedGoogle Scholar
  32. Bell C, Gillespie JS (1981) Dopamine and noradrenaline levels in peripheral tissues of several mammalian species. J Neurochem 36:703–706CrossRefPubMedGoogle Scholar
  33. Benarroch EE (2007) Enteric nervous system. Neurology 69:1953–1957.  https://doi.org/10.1212/01.wnl.0000281999.56102.b5 CrossRefPubMedGoogle Scholar
  34. Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL). Inhibitor Endocrine reviews 22:724–763.  https://doi.org/10.1210/edrv.22.6.0451 CrossRefPubMedGoogle Scholar
  35. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376.  https://doi.org/10.1371/journal.pone.0001376 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, Green NL, Admon Y, Hakim F, Shen-Orr SS, Rolls A (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22:940–944.  https://doi.org/10.1038/nm.4133 CrossRefPubMedGoogle Scholar
  37. Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR (2018) Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiology of stress 8:42–56.  https://doi.org/10.1016/j.ynstr.2018.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Berger JR, Kumar M, Kumar A, Fernandez JB, Levin B (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8:67–72CrossRefPubMedGoogle Scholar
  39. Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci U S A 91:12912–12916CrossRefPubMedPubMedCentralGoogle Scholar
  40. Bertler A, Rosengren E (1959) Occurrence and distribution of catechol amines in brain. Acta Physiol Scand 47:350–361PubMedGoogle Scholar
  41. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–2247.  https://doi.org/10.2337/db11-1274 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Bertorello AM, Sznajder JI (2005) The dopamine paradox in lung and kidney epithelia: sharing the same target but operating different signaling networks. Am J Respir Cell Mol Biol 33:432–437.  https://doi.org/10.1165/rcmb.2005-0297TR CrossRefPubMedPubMedCentralGoogle Scholar
  43. Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171.  https://doi.org/10.1016/j.jneuroim.2005.07.013 CrossRefPubMedGoogle Scholar
  44. Beyene A, McFarlane IR, Pinals R, Landry M (2017) Stochastic simulation of dopamine neuromodulation for implementation of fluorescent neurochemical probes in the striatal extracellular space. bioRxiv:144436.  https://doi.org/10.1101/144436
  45. Bhagwandin A, Fuxe K, Bennett NC, Manger PR (2008) Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brains of two species of African mole-rat. J Chem Neuroanat 35:371–387.  https://doi.org/10.1016/j.jchemneu.2008.02.005 CrossRefPubMedGoogle Scholar
  46. Biermann T, Bonsch D, Reulbach U, Kornhuber J, Bleich S (2007) Dopamine and N-methyl-D-aspartate receptor expression in peripheral blood of patients undergoing alcohol withdrawal. Journal of neural transmission (Vienna, Austria : 1996) 114:1081–1084.  https://doi.org/10.1007/s00702-007-0661-4 CrossRefGoogle Scholar
  47. Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HWM, Lew JY, Xi He, Watson S, Tengroth B, Fuxe K (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 12:37–50CrossRefPubMedGoogle Scholar
  48. Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW (2009) The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 23:492–497.  https://doi.org/10.1016/j.bbi.2009.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Bloom SR, Edwards AV, Jones CT (1988) The adrenal contribution to the neuroendocrine responses to splanchnic nerve stimulation in conscious calves. J Physiol 397:513–526CrossRefPubMedPubMedCentralGoogle Scholar
  50. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, Stanley ER, Nussenzweig M, Lira SA, Randolph GJ, Merad M (2009) Origin of the lamina propria dendritic cell network. Immunity 31:513–525.  https://doi.org/10.1016/j.immuni.2009.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Boldison J, Wong FS (2016) Immune and pancreatic beta cell interactions in type 1 diabetes. Trends Endocrinol Metab 27:856–867.  https://doi.org/10.1016/j.tem.2016.08.007 CrossRefPubMedGoogle Scholar
  52. Boneberg EM, von Seydlitz E, Propster K, Watzl H, Rockstroh B, Illges H (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ −T cells. J Neuroimmunol 173:180–187.  https://doi.org/10.1016/j.jneuroim.2005.11.018 CrossRefPubMedGoogle Scholar
  53. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS One 6:e25537.  https://doi.org/10.1371/journal.pone.0025537 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Borgkvist A, Malmlof T, Feltmann K, Lindskog M, Schilstrom B (2012) Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int J Neuropsychopharmacol 15:531–540.  https://doi.org/10.1017/s1461145711000812 CrossRefPubMedGoogle Scholar
  55. Borroto-Escuela DO, Craenenbroeck KV, Romero-Fernandez W, Guidolin D, Woods AS, Rivera A, Haegeman G, Agnati LF, Tarakanov AO, Fuxe K (2011) Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun 404:928–934.  https://doi.org/10.1016/j.bbrc.2010.12.083 CrossRefPubMedGoogle Scholar
  56. Borroto-Escuela DO, Perez de la Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K (2018) Brain dopamine transmission in health and Parkinson's disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine Heteroreceptors. Frontiers in synaptic neuroscience 10:20–20.  https://doi.org/10.3389/fnsyn.2018.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Bosse KE, Mathews TA (2011) Ethanol-induced increases in extracellular dopamine are blunted in brain-derived neurotrophic factor heterozygous mice. Neurosci Lett 489:172–176.  https://doi.org/10.1016/j.neulet.2010.12.010 CrossRefPubMedGoogle Scholar
  58. Bourque M, Dluzen DE, Di Paolo T (2011) Male/female differences in neuroprotection and neuromodulation of brain dopamine. Front Endocrinol 2:35–35.  https://doi.org/10.3389/fendo.2011.00035 CrossRefGoogle Scholar
  59. Bradberry CW (2000) Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J Neurosci 20:7109–7115CrossRefPubMedGoogle Scholar
  60. Bradbury AJ, Costall B, Domeney AM, Naylor RJ (1985) Laterality of dopamine function and neuroleptic action in the amygdala in the rat. Neuropharmacology 24:1163–1170.  https://doi.org/10.1016/0028-3908(85)90149-2 CrossRefPubMedGoogle Scholar
  61. Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X (2016) Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science (New York, NY) 351:707–710.  https://doi.org/10.1126/science.aad7969 CrossRefGoogle Scholar
  62. Brannan T, Martinez-Tica J, Di Rocco A, Yahr MD (1993) Low and high dose bromocriptine have different effects on striatal dopamine release: an in vivo study. J Neural Transm Park Dis Dement Sect 6:81–87CrossRefPubMedGoogle Scholar
  63. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192.  https://doi.org/10.1172/jci36470 CrossRefPubMedGoogle Scholar
  64. Bromek E, Haduch A, Golembiowska K, Daniel WA (2011) Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem 118:806–815.  https://doi.org/10.1111/j.1471-4159.2011.07339.x CrossRefPubMedGoogle Scholar
  65. Bromek E, Wojcikowski J, Daniel WA (2013) Involvement of the paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus in the central noradrenergic regulation of liver cytochrome P450. Biochem Pharmacol 86:1614–1620.  https://doi.org/10.1016/j.bcp.2013.09.006 CrossRefPubMedGoogle Scholar
  66. Bryan-Lluka LJ, Westwood NN, O'Donnell SR (1992) Vascular uptake of catecholamines in perfused lungs of the rat occurs by the same process as Uptake1 in noradrenergic neurones. Naunyn Schmiedeberg's Arch Pharmacol 345:319–326CrossRefGoogle Scholar
  67. Buttarelli FR, Capriotti G, Pellicano C, Prosperi D, Circella A, Festa A, Giovannelli M, Tofani A, Pontieri FE, Scopinaro F (2009) Central and peripheral dopamine transporter reduction in Parkinson's disease. Neurol Res 31:687–691.  https://doi.org/10.1179/174313209x383259 CrossRefPubMedGoogle Scholar
  68. Buu NT, Lussier C (1990) Origin of dopamine in the rat adrenal cortex. Am J Phys 258:F287–F291.  https://doi.org/10.1152/ajprenal.1990.258.2.F287 CrossRefGoogle Scholar
  69. Cabezas GA, Israili ZH, Velasco M (2003) The actions of dopamine on the airways. Am J Ther 10:477–486CrossRefPubMedGoogle Scholar
  70. Cadet JL, Bisagno V (2014) Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity. Frontiers in Pharmacology 5  https://doi.org/10.3389/fphar.2014.00204
  71. Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31CrossRefPubMedGoogle Scholar
  72. Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, Veenstra M, Anastos K, Morgello S, Berman JW (2017) Dopamine increases CD14(+)CD16(+) monocyte transmigration across the blood brain barrier: implications for substance abuse and HIV Neuropathogenesis. J NeuroImmune Pharmacol 12:353–370.  https://doi.org/10.1007/s11481-017-9726-9 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Calipari ES, Huggins KN, Mathews TA, Jones SR (2012) Conserved dorsal-ventral gradient of dopamine release and uptake rate in mice, rats and rhesus macaques. Neurochem Int 61:986–991.  https://doi.org/10.1016/j.neuint.2012.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Calvey T, Patzke N, Kaswera-Kyamakya C, Gilissen E, Bertelsen MF, Pettigrew JD, Manger PR (2015) Organization of cholinergic, catecholaminergic, serotonergic and orexinergic nuclei in three strepsirrhine primates: Galago demidoff, Perodicticus potto and Lemur catta. J Chem Neuroanat 70:42–57.  https://doi.org/10.1016/j.jchemneu.2015.10.002 CrossRefPubMedGoogle Scholar
  75. Calvey T, Patzke N, Bennett NC, Consolate KK, Gilissen E, Alagaili AN, Mohammed OB, Pettigrew JD, Manger PR (2016) Nuclear organisation of some immunohistochemically identifiable neural systems in five species of insectivore-Crocidura cyanea, Crocidura olivieri, Sylvisorex ollula, Paraechinus aethiopicus and Atelerix frontalis. J Chem Neuroanat 72:34–52.  https://doi.org/10.1016/j.jchemneu.2015.12.012 CrossRefPubMedGoogle Scholar
  76. Campos-Acuña J, Elgueta D, Pacheco R (2019) T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Frontiers in Immunology 10.  https://doi.org/10.3389/fimmu.2019.00239
  77. Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69:1853–1860.  https://doi.org/10.1136/ard.2009.119701 CrossRefPubMedGoogle Scholar
  78. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, Marino F, Straub RH (2014) Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects of dopamine on Interleukin-8 and Interleukin-6. Arthritis & Rheumatology 66:2685–2693.  https://doi.org/10.1002/art.38746 CrossRefGoogle Scholar
  79. Capellino S, Frommer KW, Rickert M, Steinmeyer J, Rehart S, Müller-Ladner U, Neumann E (2016) OP0149 dopamine pathway and bone metabolism in rheumatoid arthritis. Ann Rheum Dis 75:112–11113.  https://doi.org/10.1136/annrheumdis-2016-eular.2873 CrossRefGoogle Scholar
  80. Carey RM (2001) Theodore Cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38:297–302CrossRefPubMedGoogle Scholar
  81. Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56:1–28CrossRefPubMedGoogle Scholar
  82. Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-Hydroxytyramine in brain. Science 127(3296):471–471Google Scholar
  83. Caronti B, Antonini G, Calderaro C, Ruggieri S, Palladini G, Pontieri FE, Colosimo C (2001) Dopamine transporter immunoreactivity in peripheral blood lymphocytes in Parkinson's disease. Journal of neural transmission (Vienna, Austria : 1996) 108:803–807.  https://doi.org/10.1007/s007020170030 CrossRefGoogle Scholar
  84. Carrero JA, McCarthy DP, Ferris ST, Wan X, Hu H, Zinselmeyer BH, Vomund AN, Unanue ER (2017) Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci U S A 114:E10418–E10427.  https://doi.org/10.1073/pnas.1713543114 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Carvalho MC, Albrechet-Souza L, Masson S, Brandao ML (2005) Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 38:1857–1866.  https://doi.org/10.1590/S0100-879X2005001200014 CrossRefPubMedGoogle Scholar
  86. Cass WA, Gerhardt GA (1995) In vivo assessment of dopamine uptake in rat medial prefrontal cortex: comparison with dorsal striatum and nucleus Accumbens. J Neurochem 65:201–207.  https://doi.org/10.1046/j.1471-4159.1995.65010201.x CrossRefPubMedGoogle Scholar
  87. Cass WA, Gerhardt GA, Mayfield RD, Curella P, Zahniser NR (1992) Differences in dopamine clearance and diffusion in rat striatum and nucleus accumbens following systemic cocaine administration. J Neurochem 59:259–266CrossRefPubMedGoogle Scholar
  88. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D (2014) Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS (London, England) 28:1579–1591.  https://doi.org/10.1097/QAD.0000000000000303 CrossRefGoogle Scholar
  89. Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389.  https://doi.org/10.1172/JCI33125 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Chamorro-Marín V, García-Delgado M, Touma-Fernández A, Aguilar-Alonso E, Fernández-Mondejar E (2008) Intratracheal dopamine attenuates pulmonary edema and improves survival after ventilator-induced lung injury in rats. Crit Care 12:R39.  https://doi.org/10.1186/cc6829 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Chanvillard C, Jacolik RF, Infante-Duarte C, Nayak RC (2013) The role of natural killer cells in multiple sclerosis and their therapeutic implications. Front Immunol 4:63–63.  https://doi.org/10.3389/fimmu.2013.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Chen J, Marmur R, Pulles A, Paredes W, Gardner EL (1993) Ventral tegmental microinjection of Δ9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res 621:65–70.  https://doi.org/10.1016/0006-8993(93)90298-2 CrossRefPubMedGoogle Scholar
  93. Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX (2014) Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res 357:597–606.  https://doi.org/10.1007/s00441-014-1894-9 CrossRefPubMedGoogle Scholar
  94. Cho JL et al (2016) Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation. Science translational medicine 8:359ra132.  https://doi.org/10.1126/scitranslmed.aag1370
  95. Choi DL, Davis JF, Magrisso IJ, Fitzgerald ME, Lipton JW, Benoit SC (2012) Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 210:243–248.  https://doi.org/10.1016/j.neuroscience.2012.02.036 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Christensen NJ, Brandsborg O (1974) Dopamine in human gastric juice determined by a sensitive double-isotope-derivative technique. Scand J Clin Lab Invest 34:315–320CrossRefPubMedGoogle Scholar
  97. Chumasov EI, Petrova ES, Korzhevskii DE (2011) The immunomorphological analysis of innervation of paraganglian chromaffin cells of mammalian arteries and heart. J Evol Biochem Physiol 47:381–388.  https://doi.org/10.1134/S0022093011040104 CrossRefGoogle Scholar
  98. Ciarka A, Rimacchi R, Vincent JL, Velez-Roa S, Dumonceaux M, Leeman M, van de Borne P (2004) Effects of low-dose dopamine on ventilation in patients with chronic obstructive pulmonary disease. Eur J Clin Investig 34:508–512.  https://doi.org/10.1111/j.1365-2362.2004.01375.x CrossRefGoogle Scholar
  99. Ciarka A, Vincent JL, van de Borne P (2007) The effects of dopamine on the respiratory system: friend or foe? Pulm Pharmacol Ther 20:607–615.  https://doi.org/10.1016/j.pupt.2006.10.011 CrossRefPubMedGoogle Scholar
  100. Claustre J, Serusclat P, Peyrin L (1983) Glucuronide and sulfate catecholamine conjugates in rat and human plasma. J Neural Transm 56:265–278CrossRefPubMedGoogle Scholar
  101. Coley JS, Calderon TM, Gaskill PJ, Eugenin EA, Berman JW (2015) Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS One 10:e0117450.  https://doi.org/10.1371/journal.pone.0117450 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Coller JK, Hutchinson MR (2012) Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 134:219–245.  https://doi.org/10.1016/j.pharmthera.2012.01.008 CrossRefPubMedGoogle Scholar
  103. Cone JJ, Chartoff EH, Potter DN, Ebner SR, Roitman MF (2013) Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS One 8:e58251–e58251.  https://doi.org/10.1371/journal.pone.0058251 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Cordano C, Pardini M, Cellerino M, Schenone A, Marino F, Cosentino M (2015) Levodopa-induced neutropenia. Parkinsonism Relat Disord 21:423–425.  https://doi.org/10.1016/j.parkreldis.2015.02.002 CrossRefPubMedGoogle Scholar
  105. Corraliza I (2014) Recruiting specialized macrophages across the borders to restore brain functions. Front Cell Neurosci 8:262–262.  https://doi.org/10.3389/fncel.2014.00262 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179.  https://doi.org/10.1007/s11481-012-9410-z CrossRefPubMedGoogle Scholar
  107. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981CrossRefPubMedGoogle Scholar
  108. Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni GJM, Conti A, Boveri M, Lecchini S, Frigo G (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68:283–295CrossRefPubMedGoogle Scholar
  109. Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G (2002) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240.  https://doi.org/10.1016/S0165-5728(02)00372-7 CrossRefPubMedGoogle Scholar
  110. Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162:112–121.  https://doi.org/10.1016/j.jneuroim.2005.01.019 CrossRefPubMedGoogle Scholar
  111. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642.  https://doi.org/10.1182/blood-2006-01-028423 CrossRefPubMedGoogle Scholar
  112. Cosentino M, Zaffaroni M, Marino F (2014) Levels of mRNA for dopaminergic receptor D5 in circulating lymphocytes may be associated with subsequent response to interferon-β in patients with multiple sclerosis. J Neuroimmunol 277:193–196.  https://doi.org/10.1016/j.jneuroim.2014.10.009 CrossRefPubMedGoogle Scholar
  113. Cosentino M, Marino F, Maestroni GJM (2015) Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives. Front Cell Neurosci 9:302–302.  https://doi.org/10.3389/fncel.2015.00302 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Cragg SJ, Greenfield SA (1997) Differential autoreceptor control of Somatodendritic and axon terminal dopamine release in substantia Nigra, ventral tegmental area, and striatum. J Neurosci 17:5738.  https://doi.org/10.1523/JNEUROSCI.17-15-05738.1997 CrossRefPubMedGoogle Scholar
  115. Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277.  https://doi.org/10.1016/j.tins.2004.03.011 CrossRefPubMedGoogle Scholar
  116. Cragg SJ, Hille CJ, Greenfield SA (2000) Dopamine Release and Uptake Dynamics within Nonhuman Primate Striatum <em>In Vitro</em&gt. J Neurosci 20:8209.  https://doi.org/10.1523/JNEUROSCI.20-21-08209.2000 CrossRefPubMedGoogle Scholar
  117. Cragg SJ, Nicholson C, Kume-Kick J, Tao L, Rice ME (2001) Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J Neurophysiol 85:1761–1771.  https://doi.org/10.1152/jn.2001.85.4.1761 CrossRefPubMedGoogle Scholar
  118. Czermak C et al (2004) Reduced dopamine D4 receptor mRNA expression in lymphocytes of long-term abstinent alcohol and heroin addicts. Addiction (Abingdon, England) 99:251–257CrossRefGoogle Scholar
  119. Czub S, Koutsilieri E, Sopper S, Czub M, Stahl-Hennig C, Müller JG, Pedersen V, Gsell W, Heeney JL, Gerlach M, Gosztonyi G, Riederer P, ter Meulen V (2001) Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs. Acta Neuropathol 101:85–91PubMedGoogle Scholar
  120. Czub S, Czub M, Koutsilieri E, Sopper S, Villinger F, Müller JG, Stahl-Hennig C, Riederer P, ter Meulen V, Gosztonyi G (2004) Modulation of simian immunodeficiency virus neuropathology by dopaminergic drugs. Acta Neuropathol 107:216–226.  https://doi.org/10.1007/s00401-003-0801-3 CrossRefPubMedGoogle Scholar
  121. Dahlin M, Månsson J-E, Åmark P (2012) CSF levels of dopamine and serotonin, but not norepinephrine, metabolites are influenced by the ketogenic diet in children with epilepsy. Epilepsy Res 99:132–138.  https://doi.org/10.1016/j.eplepsyres.2011.11.003 CrossRefPubMedGoogle Scholar
  122. Davis BJ, Smith PH (1985) Effects of substantia nigra lesions on the volumes of a, B, and D cells and the content of insulin and glucagon in the rat pancreas. Diabetologia 28:756–762.  https://doi.org/10.1007/BF00265024 CrossRefPubMedGoogle Scholar
  123. Davis DG, Sparks DL (1995) Dopaminergic and serotonergic neurotransmitters in bone marrow transplant patients. J Neurol Sci 130:95–103.  https://doi.org/10.1016/0022-510X(95)00012-Q CrossRefPubMedGoogle Scholar
  124. De Laurentiis A, Pisera D, Caruso C, Candolfi M, Mohn C, Rettori V, Seilicovich A (2002) Lipopolysaccharide- and tumor necrosis factor-alpha-induced changes in prolactin secretion and dopaminergic activity in the hypothalamic-pituitary axis. Neuroimmunomodulation 10:30–39.  https://doi.org/10.1159/000064412 CrossRefPubMedGoogle Scholar
  125. Deak T (2008) Immune cells and cytokine circuits: toward a working model for understanding direct immune-to-adrenal communication pathways. Endocrinology 149:1433–1435.  https://doi.org/10.1210/en.2008-0170 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Delcambre S, Nonnenmacher Y, Hiller K (2016) Dopamine metabolism and reactive oxygen species production. In: Buhlman LM (ed) Mitochondrial mechanisms of degeneration and repair in Parkinson's disease. Springer International Publishing, Cham, pp 25–47.  https://doi.org/10.1007/978-3-319-42139-1_2 CrossRefGoogle Scholar
  127. Deleplanque B, Vitiello S, Le Moal M, Neveu PJ (1994) Modulation of immune reactivity by unilateral striatal and mesolimbic dopaminergic lesions. Neurosci Lett 166:216–220CrossRefPubMedGoogle Scholar
  128. Demarest KT, Moore KE, Riegle GD (1982) Dopaminergic neuronal function, anterior pituitary dopamine content, and serum concentrations of prolactin, luteinizing hormone and progesterone in the aged female rat. Brain Res 247:347–354.  https://doi.org/10.1016/0006-8993(82)91260-4 CrossRefPubMedGoogle Scholar
  129. DeMaria JE, Livingstone JD, Freeman ME (1998) Characterization of the dopaminergic input to the pituitary gland throughout the estrous cycle of the rat. Neuroendocrinology 67:377–383.  https://doi.org/10.1159/000054336 CrossRefPubMedGoogle Scholar
  130. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, Ren Y, Yin Z, Hamilton DJ, Reardon PR, Sherman V, Wang HY, Phillips KJ, Webb P, Wong STC, Wang RF, Hsueh WA (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17:411–422.  https://doi.org/10.1016/j.cmet.2013.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278CrossRefPubMedPubMedCentralGoogle Scholar
  132. Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052.  https://doi.org/10.1073/pnas.1010529108 CrossRefPubMedGoogle Scholar
  133. DiBona GF (1990) Renal dopamine containing nerves. What is their functional significance? American journal of hypertension 3:64s-67sGoogle Scholar
  134. Dimitrijevic I, Kalezic N, Ristic J, Bojovic O, Dimitrijevic N (2008) Digestive system damage caused by substance abuse. Acta chirurgica Iugoslavica 55:133–138CrossRefPubMedGoogle Scholar
  135. Dos-Santos-Pereira M et al (2018) Microglial glutamate release evoked by alpha-synuclein aggregates is prevented by dopamine. Glia 66:2353–2365.  https://doi.org/10.1002/glia.23472 CrossRefPubMedGoogle Scholar
  136. Dubé B, Benton T, Cruess DG, Evans DL (2005) Neuropsychiatric manifestations of HIV infection and AIDS. J Psychiatry Neurosci 30:237–246PubMedPubMedCentralGoogle Scholar
  137. Dunn AJ, Powell ML, Moreshead WV, Gaskin JM, Hall NR (1987) Effects of Newcastle disease virus administration to mice on the metabolism of cerebral biogenic amines, plasma corticosterone, and lymphocyte proliferation. Brain Behav Immun 1:216–230.  https://doi.org/10.1016/0889-1591(87)90024-9 CrossRefPubMedGoogle Scholar
  138. Dvorakova M, Hohler B, Vollerthun R, Fischbach T, Kummer W (2000) Macrophages: a major source of cytochrome b558 in the rat carotid body. Brain Res 852:349–354CrossRefPubMedGoogle Scholar
  139. Ebinger G, Bruyland M, Martin JJ, Herregodts P, Cras P, Michotte Y, Gommé L (1987) Distribution of biogenic amines and their catabolites in brains from patients with Alzheimer's disease. J Neurol Sci 77:267–283.  https://doi.org/10.1016/0022-510X(87)90128-6 CrossRefPubMedGoogle Scholar
  140. Eisenhofer G, Goldstein DS (2004) 45 - peripheral dopamine systems. In: Robertson D, Biaggioni I, Burnstock G, Low PA (eds) Primer on the autonomic nervous system (Second Edition). Academic Press, San Diego, pp 176–177.  https://doi.org/10.1016/B978-012589762-4/50046-3
  141. Eisenhofer G, Aneman A, Hooper D, Holmes C, Goldstein DS, Friberg P (1995) Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine. Am J Phys 268:G641–G649.  https://doi.org/10.1152/ajpgi.1995.268.4.G641 CrossRefGoogle Scholar
  142. Eisenhofer G, Åneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871.  https://doi.org/10.1210/jcem.82.11.4339 CrossRefPubMedGoogle Scholar
  143. Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW, Adams KT, Pacak K (2005) Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma methoxytyramine. J Clin Endocrinol Metab 90:2068–2075.  https://doi.org/10.1210/jc.2004-2025 CrossRefPubMedGoogle Scholar
  144. Elchisak MA, Cosgrove SE, Ebert MH, Stanley Burns R (1983) Distribution of free and conjugated dopamine in monkey brain, peripheral tissues and cerebrospinal fluid determined by high-performance liquid chromatography. Brain Res 279:171–176.  https://doi.org/10.1016/0006-8993(83)90175-0 CrossRefPubMedGoogle Scholar
  145. Eldrup E (2004) Significance and origin of DOPA, DOPAC, and dopamine-sulphate in plasma, tissues and cerebrospinal fluid. Dan Med Bull 51:34–62PubMedGoogle Scholar
  146. Eldrup E, Mogensen P, Jacobsen J, Pakkenberg H, Christensen NJ (1995) CSF and plasma concentrations of free norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenylalanine (DOPA), and epinephrine in Parkinson's disease. Acta Neurol Scand 92:116–121.  https://doi.org/10.1111/j.1600-0404.1995.tb01023.x CrossRefPubMedGoogle Scholar
  147. Eldrup E, Moller SE, Andreasen J, Christensen NJ (1997) Effects of ordinary meals on plasma concentrations of 3,4-dihydroxyphenylalanine, dopamine sulphate and 3,4-dihydroxyphenylacetic acid. Clinical science (London, England : 1979) 92:423–430CrossRefGoogle Scholar
  148. Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 49:1894–1903.  https://doi.org/10.1194/jlr.M800132-JLR200 CrossRefPubMedGoogle Scholar
  149. Eliasen P, Klemp P, Vagn Nielsen H, Crone P (1989) Subcutaneous and muscle blood flow during dopamine infusion in man. Scand J Clin Lab Invest 49:43–47CrossRefPubMedGoogle Scholar
  150. Elsworth JD, Jentsch JD, Morrow BA, Redmond DE Jr, Roth RH (2008) Clozapine normalizes prefrontal cortex dopamine transmission in monkeys subchronically exposed to phencyclidine. Neuropsychopharmacology 33:491–496.  https://doi.org/10.1038/sj.npp.1301448 CrossRefPubMedGoogle Scholar
  151. Engelborghs S, Marescau B, De Deyn PP (2003) Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res 28:1145–1150CrossRefPubMedGoogle Scholar
  152. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. Journal of neural transmission (Vienna, Austria : 1996) 113:477–485.  https://doi.org/10.1007/s00702-005-0409-y CrossRefGoogle Scholar
  153. Engler H, Doenlen R, Riether C, Engler A, Niemi MB, Besedovsky HO, Rey A, Pacheco-López G, Feldon J, Schedlowski M (2009) Time-dependent alterations of peripheral immune parameters after nigrostriatal dopamine depletion in a rat model of Parkinson's disease. Brain Behav Immun 23:518–526.  https://doi.org/10.1016/j.bbi.2009.01.018 CrossRefPubMedGoogle Scholar
  154. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104.  https://doi.org/10.1016/j.immuni.2013.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Euler US, Hellner S (1951) Excretion of noradrenaline, adrenaline, and Hydroxytyramine in urine. Acta Physiol Scand 22:161–167.  https://doi.org/10.1111/j.1748-1716.1951.tb00765.x CrossRefGoogle Scholar
  156. Eyre P (1971) Release of dopamine from bovine lung by specific antigen and by compound 48-80. Br J Pharmacol 42:423–427CrossRefPubMedPubMedCentralGoogle Scholar
  157. Fadda P, Scherma M, Fresu A, Collu M, Fratta W (2003) Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse (New York, NY) 50:1–6.  https://doi.org/10.1002/syn.10238 CrossRefGoogle Scholar
  158. Fadok JP, Darvas M, Dickerson TMK, Palmiter RD (2010) Long-term memory for Pavlovian fear conditioning requires dopamine in the nucleus Accumbens and basolateral amygdala. PLoS One 5:e12751.  https://doi.org/10.1371/journal.pone.0012751 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA (2015) Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 765:307–315.  https://doi.org/10.1016/j.ejphar.2015.08.026 CrossRefPubMedGoogle Scholar
  160. Falgarone G, Jaen O, Boissier MC (2005) Role for innate immunity in rheumatoid arthritis. Joint, bone, spine : revue du rhumatisme 72:17–25.  https://doi.org/10.1016/j.jbspin.2004.05.013 CrossRefGoogle Scholar
  161. Fan J, Zhang B, Shu HF, Zhang XY, Wang X, Kuang F, Liu L, Peng ZW, Wu R, Zhou Z, Wang BR (2009) Interleukin-6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells. J Neurosci Res 87:2757–2762.  https://doi.org/10.1002/jnr.22107 CrossRefPubMedGoogle Scholar
  162. Fan Y, Chen Z, Pathak JL, Carneiro AMD, Chung CY (2018) Differential regulation of adhesion and phagocytosis of resting and activated microglia by dopamine. Front Cell Neurosci 12:309–309.  https://doi.org/10.3389/fncel.2018.00309 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Fang Y, Gao T, Zhang B, Pu J (2018) Recent advances: decoding Alzheimer's disease with stem cells. Front Aging Neurosci 10:77–77.  https://doi.org/10.3389/fnagi.2018.00077 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Faraco G, Park L, Anrather J, Iadecola C (2017) Brain perivascular macrophages: characterization and functional roles in health and disease. Journal of molecular medicine (Berlin, Germany) 95:1143–1152.  https://doi.org/10.1007/s00109-017-1573-x CrossRefGoogle Scholar
  165. Faraj BA, Olkowski ZL, Jackson RT (1991) Binding of [<sup>3</sup>H]-dopamine to human lymphocytes: possible relationship to neurotransmitter uptake sites. Pharmacology 42:135–141.  https://doi.org/10.1159/000138790 CrossRefPubMedGoogle Scholar
  166. Farber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29:128–138.  https://doi.org/10.1016/j.mcn.2005.01.003 CrossRefPubMedGoogle Scholar
  167. Farhy-Tselnicker I, Allen NJ (2018) Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 13:7.  https://doi.org/10.1186/s13064-018-0104-y CrossRefPubMedPubMedCentralGoogle Scholar
  168. Farino ZJ, Morgenstern TJ, Maffei A, Quick M, de Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z (2019) New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry.  https://doi.org/10.1038/s41380-018-0344-6
  169. Favre R, de Haut M, Dalmaz Y, Pequignot JM, Peyrin L (1986) Peripheral distribution of free dopamine and its metabolites in the rat. J Neural Transm 66:135–149.  https://doi.org/10.1007/BF01260909 CrossRefPubMedGoogle Scholar
  170. Fedchenko V, Globa A, Buneeva O, Medvedev A (2013) Renalase mRNA levels in the brain, heart, and kidneys of spontaneously hypertensive rats with moderate and high hypertension. Medical science monitor basic research 19:267-270 doi: https://doi.org/10.12659/MSMBR.889540
  171. Felder CC, Jose PA, Axelrod J (1989) The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 248:171–175PubMedGoogle Scholar
  172. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135:755s–765sPubMedGoogle Scholar
  173. Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowki JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev 100:225–260CrossRefPubMedGoogle Scholar
  174. Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67:865–873CrossRefPubMedGoogle Scholar
  175. Fhaner MJ, Galligan JJ, Swain GM (2013) Increased catecholamine secretion from single adrenal chromaffin cells in DOCA-salt hypertension is associated with potassium channel dysfunction. ACS Chem Neurosci 4:1404–1413.  https://doi.org/10.1021/cn400115v CrossRefPubMedPubMedCentralGoogle Scholar
  176. Finkel Y, Eklof AC, Granquist L, Soares-da-Silva P, Bertorello AM (1994) Endogenous dopamine modulates jejunal sodium absorption during high-salt diet in young but not in adult rats. Gastroenterology 107:675–679CrossRefPubMedGoogle Scholar
  177. Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74:59–69.  https://doi.org/10.1124/mol.107.043885 CrossRefPubMedGoogle Scholar
  178. Flierl MA et al. (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721  https://doi.org/10.1038/nature06185. https://www.nature.com/articles/nature06185-supplementary-information. Accessed in 2018
  179. Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB, Huber-Lang MS, Ward PA (2009) Upregulation of phagocyte-derived Catecholamines augments the acute inflammatory response. PLoS One 4:e4414.  https://doi.org/10.1371/journal.pone.0004414 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973.  https://doi.org/10.1038/nn1103 CrossRefPubMedGoogle Scholar
  181. Fox ME, Wightman RM (2017) Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol Rev 69:12–32.  https://doi.org/10.1124/pr.116.012948 CrossRefPubMedGoogle Scholar
  182. Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, Mészáros J, Urizar E, Sibley DR, Kellendonk C, Sonntag KC, Graham DL, Colbran RJ, Stanwood GD, Javitch JA (2015) Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 20:1373–1385.  https://doi.org/10.1038/mp.2014.166 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Frieler RA, Mortensen RM (2015) Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131:1019–1030.  https://doi.org/10.1161/circulationaha.114.008788 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Fu M-H et al (2015) Stem cell transplantation therapy in Parkinson's disease. SpringerPlus 4:597–597.  https://doi.org/10.1186/s40064-015-1400-1 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Fujimura RK, Goodkin K, Petito CK, Douyon R, Feaster DJ, Concha M, Shapshak P (1997) HIV-1 proviral DNA load across neuroanatomic regions of individuals with evidence for HIV-1-associated dementia. Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association 16:146–152CrossRefGoogle Scholar
  186. Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T, Nagai R (2017) Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res 368:371–378.  https://doi.org/10.1007/s00441-016-2564-x CrossRefPubMedGoogle Scholar
  187. Fuxe K, Jacobsen KX, Hoistad M, Tinner B, Jansson A, Staines WA, Agnati LF (2003) The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 119:733–746CrossRefPubMedGoogle Scholar
  188. Fuxe K, Marcellino D, Leo G, Agnati LF (2010) Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Curr Opin Pharmacol 10:14–22.  https://doi.org/10.1016/j.coph.2009.10.010 CrossRefPubMedGoogle Scholar
  189. Gallego L, Barreiro P, Lopez-Ibor JJ (2011) Diagnosis and clinical features of major neuropsychiatric disorders in HIV infection. AIDS Rev 13:171–179PubMedGoogle Scholar
  190. Gardner DG, Shoback DM (2007) Greenspan's basic & clinical endocrinology. McGraw-Hill Medical New York:,Google Scholar
  191. Garrido-Gil P, Dominguez-Meijide A, Moratalla R, Guerra MJ, Labandeira-Garcia JL (2018a) Aging-related dysregulation in enteric dopamine and angiotensin system interactions: implications for gastrointestinal dysfunction in the elderly. Oncotarget 9:10834–10846.  https://doi.org/10.18632/oncotarget.24330 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL (2018b) Bidirectional neural interaction between central dopaminergic and gut lesions in Parkinson’s disease. Models Molecular neurobiology 55:7297–7316.  https://doi.org/10.1007/s12035-018-0937-8 CrossRefPubMedGoogle Scholar
  193. Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 14:442–450CrossRefPubMedGoogle Scholar
  194. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093CrossRefPubMedGoogle Scholar
  195. Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–1159.  https://doi.org/10.2353/ajpath.2009.081067 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation 9:203.  https://doi.org/10.1186/1742-2094-9-203 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Gaskill PJ, Calderon TM, Coley JS, Berman JW (2013) Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J NeuroImmune Pharmacol 8:621–642.  https://doi.org/10.1007/s11481-013-9443-y CrossRefPubMedPubMedCentralGoogle Scholar
  198. Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW (2014) Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 9:e108232.  https://doi.org/10.1371/journal.pone.0108232 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H (2017) HIV, tat and dopamine transmission. Neurobiol Dis 105:51–73.  https://doi.org/10.1016/j.nbd.2017.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Geracioti TD Jr, Keck PE Jr, Ekhator NN, West SA, Baker DG, Hill KK, Bruce AB, Wortman MD (1998) Continuous covariability of dopamine and serotonin metabolites in human cerebrospinal fluid. Biol Psychiatry 44:228–233CrossRefPubMedGoogle Scholar
  201. Gierut A, Perlman H, Pope RM (2010) Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am 36:271–296.  https://doi.org/10.1016/j.rdc.2010.03.004 CrossRefGoogle Scholar
  202. Gildea JJ (2009) Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance. Curr Opin Nephrol Hypertens 18:28–32.  https://doi.org/10.1097/MNH.0b013e32831a9e0b CrossRefPubMedPubMedCentralGoogle Scholar
  203. Giorelli M, Livrea P, Trojano M (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 25:395–406.  https://doi.org/10.1089/jir.2005.25.395 CrossRefGoogle Scholar
  204. Glavin GB, Hall AM (1995) Central and peripheral dopamine D1/DA1 receptor modulation of gastric secretion and experimental gastric mucosal injury. Gen Pharmacol 26:1277–1279CrossRefPubMedGoogle Scholar
  205. Glavin GB, Szabo S (1990) Dopamine in gastrointestinal disease. Dig Dis Sci 35:1153–1161.  https://doi.org/10.1007/BF01537589 CrossRefPubMedGoogle Scholar
  206. Glennon E, Kaunzner UW, Gagnidze K, McEwen BS, Bulloch K (2015) Pituitary dendritic cells communicate immune pathogenic signals. Brain Behav Immun 50:232–240.  https://doi.org/10.1016/j.bbi.2015.07.007 CrossRefPubMedGoogle Scholar
  207. Goldberg LI (1972) Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 24:1–29PubMedGoogle Scholar
  208. Goldstein DS, Holmes C (2008) Neuronal source of plasma dopamine. Clin Chem 54:1864–1871.  https://doi.org/10.1373/clinchem.2008.107193 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Goldstein DS, Mezey E, Yamamoto T, Aneman A, Friberg P, Eisenhofer G (1995) Is there a third peripheral catecholaminergic system? Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertension research : official journal of the Japanese Society of Hypertension 18(Suppl 1):S93–S99CrossRefGoogle Scholar
  210. Goldstein DS, Swoboda KJ, Miles JM, Coppack SW, Aneman A, Holmes C, Lamensdorf I, Eisenhofer G (1999) Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 84:2523–2531.  https://doi.org/10.1210/jcem.84.7.5864 CrossRefPubMedGoogle Scholar
  211. Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Basile MJ, Mash DC (2011) Catechols in post-mortem brain of patients with Parkinson disease. Eur J Neurol 18:703–710.  https://doi.org/10.1111/j.1468-1331.2010.03246.x CrossRefPubMedGoogle Scholar
  212. Gonzalez-Hernandez JA, Bornstein SR, Ehrhart-Bornstein M, Geschwend JE, Adler G, Scherbaum WA (1994) Macrophages within the human adrenal gland. Cell Tissue Res 278:201–205CrossRefPubMedGoogle Scholar
  213. Goodall M (1951) Studies of adrenaline and noradrenaline in mammalian heart and suprarenals. Acta Physiol Scand Suppl 24:7–51CrossRefPubMedGoogle Scholar
  214. Goodarzi A, Vousooghi N, Sedaghati M, Mokri A, Zarrindast MR (2009) Dopamine receptors in human peripheral blood lymphocytes: changes in mRNA expression in opioid addiction. Eur J Pharmacol 615:218–222.  https://doi.org/10.1016/j.ejphar.2009.04.060 CrossRefPubMedGoogle Scholar
  215. Griggio MA, Richard D, Leblanc J (1992) Effects of fasting and food restriction on sympathetic activity in brown adipose tissue in mice. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology 162:602–606CrossRefPubMedGoogle Scholar
  216. Guo X, Hollander L, MacPherson D, Wang L, Velazquez H, Chang J, Safirstein R, Cha C, Gorelick F, Desir GV (2016) Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep 6:22996.  https://doi.org/10.1038/srep22996 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Hama H, Hara C, Yamaguchi K, Miyawaki A (2004) PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–415CrossRefPubMedGoogle Scholar
  218. Hampl V, Herget J, Bíbová J, Baňasová A, Husková Z, Vaňourková Z, Jíchová Š, Kujal P, Vernerová Z, Sadowski J, Červenka L (2015) Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res 64:25–38PubMedGoogle Scholar
  219. Hamrell BB, Huber SA, Leslie KO (1995) Depressed unloaded sarcomere shortening velocity in acute murine coxsackievirus myocarditis: myocardial remodelling in the absence of necrosis or hypertrophy. Eur Heart J 16(Suppl O):31–35CrossRefPubMedGoogle Scholar
  220. Hanbauer I, Karoum F, Hellstrom S, Lahiri S (1981) Effects of hypoxia lasting up to one month on the catecholamine content in rat carotid body. Neuroscience 6:81–86.  https://doi.org/10.1016/0306-4522(81)90245-1 CrossRefPubMedGoogle Scholar
  221. Hannah JAM, Inglis GC, Connell JMC, Davies DL, Fraser R, Ball SG (1984) Dopamine, noradrenaline and adrenaline in the adrenal medulla and cortex of the rat. Clin Sci 66:65PCrossRefGoogle Scholar
  222. Harris RC, Zhang M-Z (2012) Dopamine, the kidney, and hypertension. Curr Hypertens Rep 14:138–143.  https://doi.org/10.1007/s11906-012-0253-z CrossRefPubMedPubMedCentralGoogle Scholar
  223. Hauber W (2010) Dopamine release in the prefrontal cortex and striatum: temporal and behavioural aspects. Pharmacopsychiatry 43(Suppl 1):S32–S41.  https://doi.org/10.1055/s-0030-1248300 CrossRefPubMedGoogle Scholar
  224. Hauber W, Fuchs H (2000) Dopamine release in the rat globus pallidus characterised by in vivo microdialysis. Behav Brain Res 111:39–44CrossRefPubMedGoogle Scholar
  225. Hawkins TA, Gala RR, Dunbar JC (1996) The lymphocyte and macrophage profile in the pancreas and spleen of NOD mice: percentage of interleukin-2 and prolactin receptors on immunocompetent cell subsets. J Reprod Immunol 32:55–71CrossRefPubMedGoogle Scholar
  226. Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266:5650–5657PubMedGoogle Scholar
  227. Hemby SE, Martin TJ, Co C, Dworkin SI, Smith JE (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J Pharmacol Exp Ther 273:591PubMedGoogle Scholar
  228. Hemmings HC Jr, Greengard P, Tung HYL, Cohen P (1984) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310:503–505.  https://doi.org/10.1038/310503a0 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Herak-Perkovic V, Grabarevic Z, Banic M, Anic B, Novosel V, Pogacnik M (2001) Effects of dopaminergic drugs on inflammatory bowel disease induced with 2,4-dinitrofluorbenzene in BALB/c mice. J Vet Pharmacol Ther 24:267–273CrossRefPubMedGoogle Scholar
  230. Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712.  https://doi.org/10.1016/0024-3205(88)90036-7 CrossRefPubMedGoogle Scholar
  231. Hernández-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J (2013) Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013:413465–413465.  https://doi.org/10.1155/2013/413465 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Hertwig L, Pache F, Romero-Suarez S, Stürner KH, Borisow N, Behrens J, Bellmann-Strobl J, Seeger B, Asselborn N, Ruprecht K, Millward JM, Infante-Duarte C, Paul F (2016) Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult Scler 22:160–173.  https://doi.org/10.1177/1352458515586084 CrossRefPubMedGoogle Scholar
  233. Homo-Delarche F, Drexhage HA (2004) Immune cells, pancreas development, regeneration and type 1 diabetes. Trends Immunol 25:222–229.  https://doi.org/10.1016/j.it.2004.02.012 CrossRefPubMedGoogle Scholar
  234. Hornykiewicz O (1986) A quarter century of brain dopamine research. In: Woodruff GN, Poat JA, Roberts PJ (eds) Dopaminergic systems and their regulation. Palgrave Macmillan UK, London, pp 3–18.  https://doi.org/10.1007/978-1-349-07431-0_1 CrossRefGoogle Scholar
  235. Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 138:123–132.  https://doi.org/10.1016/j.jneumeth.2004.03.021 CrossRefPubMedGoogle Scholar
  236. Hu L, Yang J, Song T, Hou N, Liu Y, Zhao X, Zhang D, Wang L, Wang T, Huang C (2014) A new stress model, a scream sound, alters learning and monoamine levels in rat brain. Physiol Behav 123:105–113.  https://doi.org/10.1016/j.physbeh.2013.09.010 CrossRefPubMedGoogle Scholar
  237. Hu Y, Liu X, Qiao D (2015) Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise. Biology of sport 32:187–192.  https://doi.org/10.5604/20831862.1150299 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Huang Y, Qiu AW, Peng YP, Liu Y, Huang HW, Qiu YH (2010) Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro endocrinology letters 31:782–791PubMedGoogle Scholar
  239. Hubbard KE, Wells A, Owens TS, Tagen M, Fraga CH, Stewart CF (2009) Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed Chromatogr 24:626–631.  https://doi.org/10.1002/bmc.1338 CrossRefGoogle Scholar
  240. Huck JHJ et al (2015) De novo expression of dopamine D2 receptors on microglia after stroke. J Cereb Blood Flow Metab 35:1804–1811.  https://doi.org/10.1038/jcbfm.2015.128 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Huffnagle G, Noverr MC (2008) GI microbiota and regulation of the immune system. Preface Adv Exp med biol 635:v-viGoogle Scholar
  242. Huh JY, Park YJ, Ham M, Kim JB (2014) Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Molecules and cells 37:365–371.  https://doi.org/10.14348/molcells.2014.0074 CrossRefPubMedPubMedCentralGoogle Scholar
  243. Hulsmans M et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510-522.e520.  https://doi.org/10.1016/j.cell.2017.03.050
  244. Hussain T, Lokhandwala MF (2003) Renal dopamine receptors and hypertension. Experimental biology and medicine (Maywood, NJ) 228:134–142CrossRefGoogle Scholar
  245. Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14:81–93.  https://doi.org/10.1038/nri3600 CrossRefPubMedGoogle Scholar
  246. Hutchinson MR, Watkins LR (2014) Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology 76 Pt B:218-227  https://doi.org/10.1016/j.neuropharm.2013.05.039
  247. Hutchinson MR, Northcutt AL, Chao LW, Kearney JJ, Zhang Y, Berkelhammer DL, Loram LC, Rozeske RR, Bland ST, Maier SF, Gleeson TT, Watkins LR (2008) Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun 22:1248–1256.  https://doi.org/10.1016/j.bbi.2008.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Ilani T, Strous RD, Fuchs S (2004) Dopaminergic regulation of immune cells via D3 dopamine receptor: a pathway mediated by activated T cells. FASEB J 18:1600–1602.  https://doi.org/10.1096/fj.04-1652fje CrossRefPubMedGoogle Scholar
  249. Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094CrossRefPubMedGoogle Scholar
  250. Iturriaga R, Alcayaga J (2004) Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Brain Res Rev 47:46–53.  https://doi.org/10.1016/j.brainresrev.2004.05.007 CrossRefPubMedGoogle Scholar
  251. Iwen KA et al (2017) Cold-induced Brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metab 102:4226–4234.  https://doi.org/10.1210/jc.2017-01250 CrossRefPubMedGoogle Scholar
  252. Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771.  https://doi.org/10.1007/s00216-012-6578-2 CrossRefPubMedGoogle Scholar
  253. Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus Accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21:676–681.  https://doi.org/10.1523/JNEUROSCI.21-02-00676.2001 CrossRefPubMedGoogle Scholar
  254. Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, Palmiter RD, Iuvone PM, McMahon DG (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359–9368.  https://doi.org/10.1523/JNEUROSCI.0711-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  255. Jansson A, Goldstein M, Tinner B, Zoli M, Meador-Woodruff JH, Lew JY, Levey AI, Watson S, Agnati LF, Fuxe K (1999) On the distribution patterns of D1, D2, tyrosine hydroxylase and dopamine transporter immunoreactivities in the ventral striatum of the rat. Neuroscience 89:473–489.  https://doi.org/10.1016/S0306-4522(98)00317-0 CrossRefPubMedGoogle Scholar
  256. Jin L-Q, Wang H-Y, Friedman E (2001) Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem 78:981–990.  https://doi.org/10.1046/j.1471-4159.2001.00470.x CrossRefPubMedGoogle Scholar
  257. Johnson JA, Rodeberg NT, Wightman RM (2018) Measurement of basal neurotransmitter levels using convolution-based nonfaradaic. Current Removal Analytical chemistry 90:7181–7189.  https://doi.org/10.1021/acs.analchem.7b04682 CrossRefPubMedGoogle Scholar
  258. Jonathan NB, Munsick RA (1980) Dopamine and prolactin in human pregnancy*. J Clin Endocrinol Metab 51:1019–1025.  https://doi.org/10.1210/jcem-51-5-1019 CrossRefGoogle Scholar
  259. Jones SR, Garris PA, Wightman RM (1995) Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. J Pharmacol Exp Ther 274:396PubMedGoogle Scholar
  260. Josefsson E, Bergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88:140–146CrossRefPubMedPubMedCentralGoogle Scholar
  261. Juorio AV, Chedrese PJ (1990) The concentration of dopamine and related monoamines in arteries and some other tissues of the sheep. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 95:35–37.  https://doi.org/10.1016/0742-8413(90)90079-O CrossRefGoogle Scholar
  262. Kabiersch A, Furukawa H, del Rey A, Besedovsky HO (1998) Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice. Ann N Y Acad Sci 840:123–127CrossRefPubMedGoogle Scholar
  263. Kanczkowski W, Sue M, Bornstein SR (2016) Adrenal gland microenvironment and its involvement in the regulation of stress-induced hormone secretion during Sepsis. Front Endocrinol 7:156–156.  https://doi.org/10.3389/fendo.2016.00156 CrossRefGoogle Scholar
  264. Kanemi O, Zhang X, Sakamoto Y, Ebina M, Nagatomi R (2005) Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation. Clin Exp Immunol 139:25–34.  https://doi.org/10.1111/j.1365-2249.2005.02672.x CrossRefPubMedPubMedCentralGoogle Scholar
  265. Kao TY, Chio CC, Lin MT (1994) Hypothalamic dopamine release and local cerebral blood flow during onset of heatstroke in rats. Stroke 25:2483–2486 discussion 2486-2487CrossRefPubMedGoogle Scholar
  266. Karasawa N, Kondo Y, Nagatsu I (1982) Immunohistocytochemical and immunofluorescent localization of catecholamine-synthesizing enzymes in the carotid body of the bat and dog. Archivum histologicum Japonicum = Nihon soshikigaku kiroku 45:429–435PubMedGoogle Scholar
  267. Kavelaars A, Cobelens PM, Teunis MAT, Heijnen CJ (2005) Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 161:162–168.  https://doi.org/10.1016/j.jneuroim.2005.01.004 CrossRefPubMedGoogle Scholar
  268. Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM (1992) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51:55–64CrossRefPubMedGoogle Scholar
  269. Kawakami T et al (2013) Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. Journal of immunology (Baltimore, Md : 1950) 191:3358–3372.  https://doi.org/10.4049/jimmunol.1300342 CrossRefGoogle Scholar
  270. Kawamura M et al (1999) Differential effects of chemical sympathectomy on expression and activity of tyrosine hydroxylase and levels of catecholamines and DOPA in peripheral tissues of rats. Neurochem Res 24:25–32CrossRefPubMedGoogle Scholar
  271. Kawano M, Takagi R, Kaneko A, Matsushita S (2015) Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J Neuroimmunol 289:43–55.  https://doi.org/10.1016/j.jneuroim.2015.10.001 CrossRefPubMedGoogle Scholar
  272. Kawano M, Takagi R, Saika K, Matsui M, Matsushita S (2018) Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int Immunol 30:591–606.  https://doi.org/10.1093/intimm/dxy057 CrossRefPubMedGoogle Scholar
  273. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96CrossRefPubMedGoogle Scholar
  274. Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci U S A 69:2145–2149CrossRefPubMedPubMedCentralGoogle Scholar
  275. Keefe KA, Zigmond MJ, Abercrombie ED (1993) In vivo regulation of extracellular dopamine in the neostriatum: influence of impulse activity and local excitatory amino acids. J Neural Transm Gen Sect 91:223–240CrossRefPubMedGoogle Scholar
  276. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER (2016) Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 113:14835–14840.  https://doi.org/10.1073/pnas.1616515114 CrossRefPubMedPubMedCentralGoogle Scholar
  277. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 98:1964–1969CrossRefPubMedPubMedCentralGoogle Scholar
  278. Kieburtz K, Ketonen L, Cox C, Grossman H, Holloway R, Booth H, Hickey C, Feigin A, Caine ED (1996) Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection. Arch Neurol 53:155–158CrossRefPubMedGoogle Scholar
  279. Kilpatrick IC, Jones MW, Johnson BJ, Cornwall J, Phillipson OT (1986) Thalamic control of dopaminergic functions in the caudate-putamen of the rat—II. Studies using ibotenic acid injection of the parafascicular-intralaminar nuclei. Neuroscience 19:979–990.  https://doi.org/10.1016/0306-4522(86)90310-6 CrossRefPubMedGoogle Scholar
  280. Kim D, Kim K, Jeong S, Kim D, Yoo V, Jung Y (2019) Therapeutic switching of sulpiride, an anti-psychotic and prokinetic drug, to an anti-colitic drug using colon-specific drug delivery. Drug Deliv Transl Res 9(1):334–343Google Scholar
  281. Kim W-G, Mohney RP, Wilson B, Jeohn G-H, Liu B, Hong J-S (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316.  https://doi.org/10.1523/JNEUROSCI.20-16-06309.2000 CrossRefPubMedGoogle Scholar
  282. Kim T-H, Choi J, Kim H-G, Kim HR (2014) Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry. Journal of Analytical Methods in Chemistry 2014:11.  https://doi.org/10.1155/2014/506870 CrossRefGoogle Scholar
  283. King RJ, Mefford IN, Wang C, Murchison A, Caligari EJ, Berger PA (1986) CSF dopamine levels correlate with extraversion in depressed patients. Psychiatry Res 19:305–310.  https://doi.org/10.1016/0165-1781(86)90123-X CrossRefPubMedGoogle Scholar
  284. Kipnis J, Cardon M, Avidan H, Lewitus GM, Mordechay S, Rolls A, Shani Y, Schwartz M (2004) Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: implications for neurodegeneration. J Neurosci 24:6133–6143.  https://doi.org/10.1523/jneurosci.0600-04.2004 CrossRefPubMedGoogle Scholar
  285. Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10:1626–1642CrossRefPubMedGoogle Scholar
  286. Kirillova GP, Hrutkay RJ, Shurin MR, Shurin GV, Tourkova IL, Vanyukov MM (2008) Dopamine receptors in human lymphocytes: Radioligand binding and quantitative RT-PCR assays. J Neurosci Methods 174:272–280.  https://doi.org/10.1016/j.jneumeth.2008.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Kita T, Matsunari Y, Saraya T, Shimada K, O’Hara K, Kubo K, Wagner GC, Nakashima T (2000) Methamphetamine-induced striatal dopamine release, behavior changes and neurotoxicity in BALB/c mice. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 18:521–530CrossRefGoogle Scholar
  288. Kobayashi Y, Ricci A, Amenta F, Cavallotti C, Hattori K (1995) Localization of dopamine receptors in the rabbit lung vasculature. J Vasc Res 32:200–206.  https://doi.org/10.1159/000159094 CrossRefPubMedGoogle Scholar
  289. Kopec A, Smith CJ, Ayre NR, Sweat SC, Bilbo SD (2017) Microglial elimination of dopamine D1 receptors defines sex-specific changes in nucleus accumbens development and social play behavior during adolescence. bioRxivGoogle Scholar
  290. Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 37:333–364PubMedGoogle Scholar
  291. Korf J, Grasdijk L, Westerink BHC (1976) Effects of electrical stimulation of the nigrostriatal pathway of the rat on dopamine metabolism. J Neurochem 26:579–584.  https://doi.org/10.1111/j.1471-4159.1976.tb01514.x CrossRefPubMedGoogle Scholar
  292. Kovacs K (2012) Microglia and Drug-Induced Plasticity in Reward-Related Neuronal Circuits. Frontiers in Molecular Neuroscience 5  https://doi.org/10.3389/fnmol.2012.00074
  293. Kruger JL, Patzke N, Fuxe K, Bennett NC, Manger PR (2012) Nuclear organization of cholinergic, putative catecholaminergic, serotonergic and orexinergic systems in the brain of the African pygmy mouse (Mus minutoides): organizational complexity is preserved in small brains. J Chem Neuroanat 44:45–56.  https://doi.org/10.1016/j.jchemneu.2012.04.002 CrossRefPubMedGoogle Scholar
  294. Kuchel OG, Kuchel GA (1991) Peripheral dopamine in pathophysiology of hypertension. Interaction with aging and lifestyle. Hypertension 18:709–721CrossRefPubMedGoogle Scholar
  295. Kumai T, Tateishi T, Tanaka M, Watanabe M, Shimizu H, Kobayashi S (2000) Effect of interferon-alpha on tyrosine hydroxylase and catecholamine levels in the brain of rats. Life Sci 67:663–669CrossRefPubMedGoogle Scholar
  296. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Comprehensive Physiology 2:141–219.  https://doi.org/10.1002/cphy.c100069 CrossRefPubMedPubMedCentralGoogle Scholar
  297. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15:257–274.  https://doi.org/10.1080/13550280902973952 CrossRefPubMedGoogle Scholar
  298. Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753.  https://doi.org/10.1038/nri3523 CrossRefPubMedGoogle Scholar
  299. Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep 6:33738.  https://doi.org/10.1038/srep33738 CrossRefPubMedPubMedCentralGoogle Scholar
  300. Kutlu MG et al. (2018) Granulocyte colony stimulating factor enhances reward learning through potentiation of mesolimbic dopamine system function. The Journal of NeuroscienceGoogle Scholar
  301. Lacagnina MJ, Rivera PD, Bilbo SD (2017) Glial and Neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 42:156–177.  https://doi.org/10.1038/npp.2016.121 CrossRefGoogle Scholar
  302. Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino AI (2005) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155:87–96.  https://doi.org/10.1016/j.toxlet.2004.08.011 CrossRefPubMedGoogle Scholar
  303. Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O (2016) Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis 22:959–969PubMedPubMedCentralGoogle Scholar
  304. Lam S-Y, Liu Y, Ng K-M, Lau C-F, Liong EC, Tipoe GL, Fung M-L (2012) Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol 137:303–317.  https://doi.org/10.1007/s00418-011-0900-5 CrossRefPubMedGoogle Scholar
  305. Lamensdorf I, Porat S, Simantov R, Finberg JP (1999) Effect of low-dose treatment with selegiline on dopamine transporter (DAT) expression and amphetamine-induced dopamine release in vivo. Br J Pharmacol 126:997–1002.  https://doi.org/10.1038/sj.bjp.0702389 CrossRefPubMedPubMedCentralGoogle Scholar
  306. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773.  https://doi.org/10.1016/j.neuron.2008.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  307. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett 585:3770–3780.  https://doi.org/10.1016/j.febslet.2011.04.066 CrossRefPubMedPubMedCentralGoogle Scholar
  308. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci 111:16029–16034.  https://doi.org/10.1073/pnas.1406508111 CrossRefPubMedGoogle Scholar
  309. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170CrossRefPubMedPubMedCentralGoogle Scholar
  310. Le Fur G, Phan T, Uzan A (1980) Identification of stereospecific [3H]spiroperidol binding sites in mammalian lymphocytes. Life Sci 26:1139–1148.  https://doi.org/10.1016/0024-3205(80)90653-0 CrossRefPubMedGoogle Scholar
  311. Lechin F, van der Dijs B, Rada I, Jara H, Lechin AE, Cabrera A, Lechin ME, Jimènez V, Gòmez F, Villa S, Acosta E, Arocha L (1990) Plasma neurotransmitters and cortisol in duodenal ulcer patients. Role of stress Dig Dis Sci 35:1313–1319CrossRefPubMedGoogle Scholar
  312. Lee FJ et al (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111:219–230CrossRefPubMedGoogle Scholar
  313. Lee DJ, Tseng HC, Wong SW, Wang Z, Deng M, Ko C-C (2015) Dopaminergic effects on in vitro osteogenesis. Bone research 3:15020–15020.  https://doi.org/10.1038/boneres.2015.20 CrossRefPubMedPubMedCentralGoogle Scholar
  314. Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ Jr, Near JA, Wightman RM (1991) Secretion of catecholamines from individual adrenal medullary chromaffin cells. J Neurochem 56:1855–1863CrossRefPubMedGoogle Scholar
  315. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807CrossRefPubMedGoogle Scholar
  316. Levandis G, Balestra B, Siani F, Rizzo V, Ghezzi C, Ambrosi G, Cerri S, Bonizzi A, Vicini R, Vairetti M, Ferrigno A, Pastoris O, Blandini F (2015) Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: relevance to gastrointestinal dysfunctions in Parkinson's disease. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 27:1783–1795.  https://doi.org/10.1111/nmo.12691 CrossRefGoogle Scholar
  317. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90:8861–8865CrossRefPubMedPubMedCentralGoogle Scholar
  318. Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta physiologica (Oxford, England) 216:42–89.  https://doi.org/10.1111/apha.12476 CrossRefGoogle Scholar
  319. Levite M, Chowers Y, Ganor Y, Besser M, Hershkovits R, Cahalon L (2001) Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur J Immunol 31:3504–3512 https://doi.org/10.1002/1521-4141(200112)31:12&#60;3504::aid-immu3504&#62;3.0.co;2-fGoogle Scholar
  320. Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A 79:6385–6389CrossRefPubMedPubMedCentralGoogle Scholar
  321. Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD (2006) Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 26:2798–2807.  https://doi.org/10.1523/jneurosci.4720-05.2006 CrossRefPubMedGoogle Scholar
  322. Limacher A, Bhagwandin A, Fuxe K, Manger PR (2008) Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the cape porcupine (Hystrix africaeaustralis): increased brain size does not lead to increased organizational complexity. J Chem Neuroanat 36:33–52.  https://doi.org/10.1016/j.jchemneu.2008.03.007 CrossRefPubMedGoogle Scholar
  323. Lin JC, Lin CS, Hsu CW, Lin CL, Kao CH (2016) Association between Parkinson's disease and inflammatory bowel disease: a Nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 22:1049–1055.  https://doi.org/10.1097/mib.0000000000000735 CrossRefPubMedGoogle Scholar
  324. Lineberry TW, Bostwick JM (2006) Methamphetamine abuse: a perfect storm of complications. Mayo Clin Proc 81:77–84.  https://doi.org/10.4065/81.1.77 CrossRefPubMedGoogle Scholar
  325. Liu J, Divoux A, Sun J, Zhang J, Clément K, Glickman JN, Sukhova GK, Wolters PJ, du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi GP (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:940–945.  https://doi.org/10.1038/nm.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  326. Lloyd CM, Marsland BJ (2017) Lung homeostasis: influence of age, microbes, and the immune system. Immunity 46:549–561.  https://doi.org/10.1016/j.immuni.2017.04.005 CrossRefPubMedGoogle Scholar
  327. Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36:569–577.  https://doi.org/10.1016/j.it.2015.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  328. Lucas LA, McMillen BA (2002) Differences in brain area concentrations of dopamine and serotonin in Myers' high ethanol preferring (mHEP) and outbred rats. Journal of neural transmission (Vienna, Austria : 1996) 109:279-292.  https://doi.org/10.1007/s007020200023
  329. Luft FC (2005) Renalase, a catecholamine-metabolizing hormone from the kidney. Cell Metab 1:358–360.  https://doi.org/10.1016/j.cmet.2005.05.008 CrossRefPubMedGoogle Scholar
  330. Łukasiewicz S, Błasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M (2016) Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics – in vitro studies. J Neurochem 137:549–560.  https://doi.org/10.1111/jnc.13582 CrossRefPubMedGoogle Scholar
  331. Lutzky V, Hannawi S, Thomas R (2007) Cells of the synovium in rheumatoid arthritis. Dendritic cells. Arthritis Res Ther 9:219.  https://doi.org/10.1186/ar2200 CrossRefPubMedPubMedCentralGoogle Scholar
  332. Lyons DJ, Hellysaz A, Broberger C (2012) Prolactin regulates tuberoinfundibular dopamine neuron discharge pattern: novel feedback control mechanisms in the lactotrophic axis. J Neurosci 32:8074–8083.  https://doi.org/10.1523/jneurosci.0129-12.2012 CrossRefPubMedGoogle Scholar
  333. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain Axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:e1003726.  https://doi.org/10.1371/journal.ppat.1003726 CrossRefPubMedPubMedCentralGoogle Scholar
  334. Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H (2018) The dopamine transporter: an unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's disease. Brain Behav Immun 70:21–35.  https://doi.org/10.1016/j.bbi.2018.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  335. Madden KS (2017) Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals. Dev Comp Immunol 66:92–97.  https://doi.org/10.1016/j.dci.2016.04.015 CrossRefPubMedGoogle Scholar
  336. Maestroni GJ, Cosentino M, Marino F, Togni M, Conti A, Lecchini S, Frigo G (1998) Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol 26:1172–1177PubMedGoogle Scholar
  337. Magro F, Vieira-Coelho MA, Fraga S, Serrao MP, Veloso FT, Ribeiro T, Soares-da-Silva P (2002) Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig Dis Sci 47:216–224CrossRefPubMedGoogle Scholar
  338. Magro F, Fraga S, Ribeiro T, Soares-da-Silva P (2004) Decreased availability of intestinal dopamine in transmural colitis may relate to inhibitory effects of interferon-γ upon L-DOPA uptake, Acta Physiol Scand. 180:379–386.  https://doi.org/10.1111/j.1365-201X.2004.01260.x
  339. Manger PR, Fuxe K, Ridgway SH, Siegel JM (2004) The distribution and morphological characteristics of catecholaminergic cells in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Brain Behav Evol 64:42–60.  https://doi.org/10.1159/000077542 CrossRefPubMedGoogle Scholar
  340. Männistö PT, Kaakkola S (1999) Catechol-&lt;em&gt;O&lt;/em&gt;-methyltransferase (COMT): Biochemistry, Molecular Biology, Pharmacology, and Clinical Efficacy of the New Selective COMT. Inhibitors Pharmacological reviews 51:593PubMedGoogle Scholar
  341. Marinelli M, McCutcheon JE (2014) Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 282:176–197.  https://doi.org/10.1016/j.neuroscience.2014.07.034 CrossRefPubMedPubMedCentralGoogle Scholar
  342. Marino F, Cosentino M (2016) Multiple sclerosis: repurposing dopaminergic drugs for MS--the evidence mounts. Nat Rev Neurol 12:191–192.  https://doi.org/10.1038/nrneurol.2016.33 CrossRefPubMedGoogle Scholar
  343. Marino F, Cosentino M, Bombelli R, Ferrari M, Maestroni GJ, Conti A, Lecchini S, Frigo G (1997) Measurement of catecholamines in mouse bone marrow by means of HPLC with electrochemical detection. Haematologica 82:392–394PubMedGoogle Scholar
  344. Marino F, Cosentino M, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27:489–495CrossRefPubMedGoogle Scholar
  345. Markianos M, Koutsis G, Evangelopoulos ME, Mandellos D, Karahalios G, Sfagos C (2009) Relationship of CSF neurotransmitter metabolite levels to disease severity and disability in multiple sclerosis. J Neurochem 108:158–164.  https://doi.org/10.1111/j.1471-4159.2008.05750.x CrossRefPubMedGoogle Scholar
  346. Maseko BC, Patzke N, Fuxe K, Manger PR (2013) Architectural organization of the african elephant diencephalon and brainstem. Brain Behav Evol 82:83–128.  https://doi.org/10.1159/000352004 CrossRefPubMedGoogle Scholar
  347. Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, Bellinger DL, Rogers J (2009) Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging 30:1805–1817.  https://doi.org/10.1016/j.neurobiolaging.2008.01.001 CrossRefPubMedGoogle Scholar
  348. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, Wodak A, Panda S, Tyndall M, Toufik A, Mattick RP (2008) Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet 372:1733–1745.  https://doi.org/10.1016/s0140-6736(08)61311-2 CrossRefPubMedGoogle Scholar
  349. Matsuyama N, Shibata S, Matoba A, Kudo TA, Danielsson J, Kohjitani A, Masaki E, Emala CW, Mizuta K (2018) The dopamine D1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium. Respir Res 19:53.  https://doi.org/10.1186/s12931-018-0757-4 CrossRefPubMedPubMedCentralGoogle Scholar
  350. McCarty R, Kirby RF, Carey RM (1986) Effects of dietary sodium on dopamine content of rat adrenal cortex. Physiol Behav 37:785–789CrossRefPubMedGoogle Scholar
  351. McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40CrossRefPubMedGoogle Scholar
  352. McQueen DS, Mir AK, Brash HM, Nahorski SR (1984) Increased sensitivity of rabbit carotid body chemoreceptors to dopamine after chronic treatment with domperidone. Eur J Pharmacol 104:39–46.  https://doi.org/10.1016/0014-2999(84)90366-2 CrossRefPubMedGoogle Scholar
  353. Mebel DM, Wong JC, Dong YJ, Borgland SL (2012) Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci 36:2336–2346.  https://doi.org/10.1111/j.1460-9568.2012.08168.x CrossRefPubMedPubMedCentralGoogle Scholar
  354. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Communication and Signaling 11:34.  https://doi.org/10.1186/1478-811X-11-34 CrossRefPubMedGoogle Scholar
  355. Mercier FE, Ragu C, Scadden DT (2011) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60.  https://doi.org/10.1038/nri3132 CrossRefPubMedPubMedCentralGoogle Scholar
  356. Meredith EJ, Holder MJ, Rosen A, Lee AD, Dyer MJ, Barnes NM, Gordon J (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: implications for non-Hodgkin's lymphoma. Proc Natl Acad Sci U S A 103:13485–13490.  https://doi.org/10.1073/pnas.0605993103 CrossRefPubMedPubMedCentralGoogle Scholar
  357. Meshki Baf MH, Subhash MN, Lakshmana KM, Sridhara Rama Rao BS (1994) Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine. Neurochem Res 19:1139–1143.  https://doi.org/10.1007/BF00965147 CrossRefGoogle Scholar
  358. Mezey E, Palkovits M (1992) Localization of targets for anti-ulcer drugs in cells of the immune system. Science 258:1662–1665CrossRefPubMedGoogle Scholar
  359. Mezey E, Eisenhofer G, Harta G, Hansson S, Gould L, Hunyady B, Hoffman BJ (1996) A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci U S A 93:10377–10382CrossRefPubMedPubMedCentralGoogle Scholar
  360. Mezey É, Eisenhofer G, Hansson S, Hunyady B, Hoffman BJ (1998) Dopamine produced by the stomach may act as a paracrine/ autocrine hormone in the rat. Neuroendocrinology 67:336–348.  https://doi.org/10.1159/000054332 CrossRefPubMedGoogle Scholar
  361. Mignini F, Streccioni V, Amenta F (2003) Autonomic innervation of immune organs and neuroimmune modulation. Auton Autocoid Pharmacol 23:1–25CrossRefGoogle Scholar
  362. Mignini F, Tomassoni D, Traini E, Amenta F (2009) Dopamine, vesicular transporters and dopamine receptor expression and localization in rat thymus and spleen. J Neuroimmunol 206:5–13.  https://doi.org/10.1016/j.jneuroim.2008.09.018 CrossRefPubMedGoogle Scholar
  363. Mignini F, Sabbatini M, Capacchietti M, Amantini C, Bianchi E, Artico M, Tammaro A (2013) T-cell subpopulations express a different pattern of dopaminergic markers in intra- and extra-thymic compartments. J Biol Regul Homeost Agents 27:463–475PubMedGoogle Scholar
  364. Mignini F, Sabbatini M, Mattioli L, Cosenza M, Artico M, Cavallotti C (2014) Neuro-immune modulation of the thymus microenvironment (review). Int J Mol Med 33:1392–1400.  https://doi.org/10.3892/ijmm.2014.1709 CrossRefPubMedGoogle Scholar
  365. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225.  https://doi.org/10.1152/physrev.1998.78.1.189 CrossRefPubMedPubMedCentralGoogle Scholar
  366. Mitchell UH, Obray JD, Hunsaker E, Garcia BT, Clarke TJ, Hope S, Steffensen SC (2018) Peripheral dopamine in restless legs syndrome. Front Neurol 9:155–155.  https://doi.org/10.3389/fneur.2018.00155 CrossRefPubMedPubMedCentralGoogle Scholar
  367. Mittal R et al (2017) Neurotransmitters: the critical modulators regulating gut-brain Axis. J Cell Physiol 232:2359–2372.  https://doi.org/10.1002/jcp.25518 CrossRefPubMedPubMedCentralGoogle Scholar
  368. Mizuta K, Zhang Y, Xu D, Mizuta F, D'Ovidio F, Masaki E, Emala CW (2013) The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle. Respir Res 14:89–89.  https://doi.org/10.1186/1465-9921-14-89 CrossRefPubMedPubMedCentralGoogle Scholar
  369. Mobini M, Kashi Z, Mohammad Pour AR, Adibi E (2011) The effect of cabergoline on clinical and laboratory findings in active rheumatoid arthritis. Iran Red Crescent Med J 13:749–750PubMedPubMedCentralGoogle Scholar
  370. Moghaddam B, Bunney BS (1989) Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: comparison to amphetamine. Synapse (New York, NY) 4:156–161.  https://doi.org/10.1002/syn.890040209 CrossRefGoogle Scholar
  371. MohanKumar SMJ, MohanKumar PS, Quadri SK (1999) Lipopolysaccharide-induced changes in monoamines in specific areas of the brain: blockade by interleukin-1 receptor antagonist1Preliminary results were presented at the experimental biology meeting, Atlanta, GA, USA, 1995.1 Brain Research 824:232-237  https://doi.org/10.1016/S0006-8993(99)01206-8
  372. Mohanty PK, Sowers JR, Thames MD, Beck FW, Kawaguchi A, Lower RR (1986) Myocardial norepinephrine, epinephrine and dopamine concentrations after cardiac autotransplantation in dogs. J Am Coll Cardiol 7:419–424CrossRefPubMedGoogle Scholar
  373. Montagu KA (1957) Catechol compounds in rat tissues and in brains of different animals. Nature 180:244–245.  https://doi.org/10.1038/180244a0 CrossRefPubMedGoogle Scholar
  374. Morikawa H, Paladini CA (2011) Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 198:95–111.  https://doi.org/10.1016/j.neuroscience.2011.08.023 CrossRefPubMedPubMedCentralGoogle Scholar
  375. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395CrossRefPubMedGoogle Scholar
  376. Morris DL, Cho KW, DelProposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, Singer K, Lumeng CN (2013) Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62:2762–2772.  https://doi.org/10.2337/db12-1404 CrossRefPubMedPubMedCentralGoogle Scholar
  377. Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Jachau K, Madea B (2000) Determination of dopamine and dopamine-derived (R)−/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci Int 113:359–366CrossRefPubMedGoogle Scholar
  378. Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557.  https://doi.org/10.1210/jcem.81.10.8855800 CrossRefPubMedGoogle Scholar
  379. Myohanen TT, Schendzielorz N, Mannisto PT (2010) Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem 113:1632–1643.  https://doi.org/10.1111/j.1471-4159.2010.06723.x CrossRefPubMedGoogle Scholar
  380. Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M (2012) Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 242:60–71.  https://doi.org/10.1016/j.jneuroim.2011.11.009 CrossRefPubMedGoogle Scholar
  381. Nagai Y, Ueno S, Saeki Y, Soga F, Hirano M, Yanagihara T (1996) Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson&#039;s disease. Neurology 46:791.  https://doi.org/10.1212/WNL.46.3.791 CrossRefPubMedGoogle Scholar
  382. Nagatomo K, Suga S, Saitoh M, Kogawa M, Kobayashi K, Yamamoto Y, Yamada K (2017) Dopamine D1 receptor immunoreactivity on fine processes of GFAP-positive astrocytes in the substantia Nigra pars Reticulata of adult mouse. Front Neuroanat 11.  https://doi.org/10.3389/fnana.2017.00003
  383. Nagler J, Schriever SC, De Angelis M, Pfluger PT, Schramm KW (2018) Comprehensive analysis of nine monoamines and metabolites in small amounts of peripheral murine (C57Bl/6 J) tissues. Biomedical chromatography : BMC 32.  https://doi.org/10.1002/bmc.4151
  384. Nagy GM, DeMaria JE, Freeman ME (1998) Changes in the local metabolism of dopamine in the anterior and neural lobes but not in the intermediate lobe of the pituitary gland during nursing. Brain Res 790:315–317.  https://doi.org/10.1016/S0006-8993(97)01559-X CrossRefPubMedGoogle Scholar
  385. Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K, Harada H, Higashi T, Takagi R, Nakano K, Hagiwara K, Kanazawa M, Dohi M, Nagata M, Matsushita S (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186:5975–5982.  https://doi.org/10.4049/jimmunol.1001274 CrossRefPubMedGoogle Scholar
  386. Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, Yoshimura M, Kitaichi K, Hasegawa T, Saito K, Yamada Y, Seishima M, Sekikawa K, Kim HC, Nabeshima T (2004) Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 24:2212–2225.  https://doi.org/10.1523/jneurosci.4847-03.2004 CrossRefPubMedGoogle Scholar
  387. Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291.  https://doi.org/10.1016/j.bbrc.2008.06.012 CrossRefPubMedGoogle Scholar
  388. Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21:645–654.  https://doi.org/10.1093/intimm/dxp033 CrossRefPubMedGoogle Scholar
  389. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752.  https://doi.org/10.4049/jimmunol.1002475 CrossRefPubMedGoogle Scholar
  390. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 21:736–745.  https://doi.org/10.1016/j.bbi.2007.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  391. Nayak D, Zinselmeyer BH, Corps KN, McGavern DB (2012) In vivo dynamics of innate immune sentinels in the CNS. Intravital 1:95–106.  https://doi.org/10.4161/intv.22823 CrossRefPubMedPubMedCentralGoogle Scholar
  392. Nikishina YO, Sapronova AY, Ugrumov MV (2016) The effect of dopamine secreted by the brain into the systemic circulation on prolactin synthesis by the pituitary gland in ontogenesis. Acta Nat 8:111–117Google Scholar
  393. Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447CrossRefPubMedGoogle Scholar
  394. Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340.  https://doi.org/10.1523/jneurosci.4466-06.2007 CrossRefPubMedGoogle Scholar
  395. Nolan R, Gaskill PJ (2018) The role of catecholamines in HIV neuropathogenesis. Brain Res 1702:54–73.  https://doi.org/10.1016/j.brainres.2018.04.030 CrossRefPubMedGoogle Scholar
  396. Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ (2018) Role of macrophage dopamine receptors in mediating cytokine production: implications for Neuroinflammation in the context of HIV-associated neurocognitive disorders. J NeuroImmune Pharmacol 14:134–156.  https://doi.org/10.1007/s11481-018-9825-2 CrossRefPubMedGoogle Scholar
  397. Nurse CA, Fearon IM (2002) Carotid body chemoreceptors in dissociated cell culture. Microsc Res Tech 59:249–255.  https://doi.org/10.1002/jemt.10199 CrossRefPubMedGoogle Scholar
  398. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16:305–312.  https://doi.org/10.1038/nrn3939 CrossRefPubMedGoogle Scholar
  399. Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG (2013) The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep 3:1447.  https://doi.org/10.1038/srep01447 CrossRefPubMedPubMedCentralGoogle Scholar
  400. Ortega Martinez de Victoria E, Xu X, Koska J, Francisco AM, Scalise M, Ferrante AW Jr, Krakoff J (2009) Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes 58:385–393.  https://doi.org/10.2337/db08-0536 CrossRefPubMedPubMedCentralGoogle Scholar
  401. Ortega-Saenz P et al (2016) Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. J Physiol 594:7229–7248.  https://doi.org/10.1113/jp272961 CrossRefPubMedPubMedCentralGoogle Scholar
  402. Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB, Peele JL, Carelli RM, Wightman RM (2012) Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J Neurochem 121:252–262.  https://doi.org/10.1111/j.1471-4159.2012.07677.x CrossRefPubMedPubMedCentralGoogle Scholar
  403. Özoğul F (2004) Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and hafnia alvei using a rapid HPLC method. Eur Food Res Technol 219:465–469.  https://doi.org/10.1007/s00217-004-0988-0 CrossRefGoogle Scholar
  404. Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19.  https://doi.org/10.1016/j.jneuroim.2009.07.018 CrossRefPubMedGoogle Scholar
  405. Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol 5:117–117.  https://doi.org/10.3389/fimmu.2014.00117 CrossRefPubMedPubMedCentralGoogle Scholar
  406. Panariello F, De Luca V, de Bartolomeis A (2011) Weight gain, schizophrenia and antipsychotics: new findings from animal model and pharmacogenomic studies. Schizophr Res Treat 2011:459284–459284.  https://doi.org/10.1155/2011/459284 CrossRefGoogle Scholar
  407. Papa I et al (2017) TFH-derived dopamine accelerates productive synapses in germinal centres nature 547:318-323.  https://doi.org/10.1038/nature23013
  408. Parsons LH, Justice JB Jr (1992) Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J Neurochem 58:212–218CrossRefPubMedGoogle Scholar
  409. Peaston RT, Weinkove C (2004) Measurement of catecholamines and their metabolites. Ann Clin Biochem 41:17–38.  https://doi.org/10.1258/000456304322664663 CrossRefPubMedGoogle Scholar
  410. Pellegrini C, Colucci R, Antonioli L, Barocelli E, Ballabeni V, Bernardini N, Blandizzi C, de Jonge WJ, Fornai M (2016) Intestinal dysfunction in Parkinson's disease: lessons learned from translational studies and experimental models. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society 28:1781–1791.  https://doi.org/10.1111/nmo.12933 CrossRefGoogle Scholar
  411. Pellock SJ, Redinbo MR (2017) Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem 292:8569–8576.  https://doi.org/10.1074/jbc.R116.767434 CrossRefPubMedPubMedCentralGoogle Scholar
  412. Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ, Seeman P, O'Dowd BF, George SR (2010) The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. J Biol Chem 285:36625–36634.  https://doi.org/10.1074/jbc.M110.159954 CrossRefPubMedPubMedCentralGoogle Scholar
  413. Perreault ML, Hasbi A, O'Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168.  https://doi.org/10.1038/npp.2013.148 CrossRefPubMedGoogle Scholar
  414. Perrin DG, Cutz E, Becker LE, Bryan AC, Madapallimatum A, Sole MJ (1984) Sudden infant death syndrome: increased carotid-body dopamine and noradrenaline content. Lancet 2:535–537CrossRefPubMedGoogle Scholar
  415. Peters JL, Michael AC (2000) Changes in the kinetics of dopamine release and uptake have differential effects on the spatial distribution of extracellular dopamine concentration in rat striatum. J Neurochem 74:1563–1573CrossRefPubMedGoogle Scholar
  416. Pettit HO, Pan H-T, Parsons LH, Justice JB (1990) Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J Neurochem 55:798–804.  https://doi.org/10.1111/j.1471-4159.1990.tb04562.x CrossRefPubMedGoogle Scholar
  417. Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27:5291–5300.  https://doi.org/10.1523/jneurosci.1069-07.2007 CrossRefPubMedGoogle Scholar
  418. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618.  https://doi.org/10.1038/nature01476 CrossRefPubMedGoogle Scholar
  419. Pickel VM, Nirenberg MJ, Milner TA (1996) Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. J Neurocytol 25:843–856CrossRefPubMedGoogle Scholar
  420. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238.  https://doi.org/10.1016/j.neubiorev.2005.04.016 CrossRefPubMedGoogle Scholar
  421. Pierpont GL, Francis GS, DeMaster EG, Olivari MT, Ring WS, Goldenberg IF, Reynolds S, Cohn JN (1987) Heterogeneous myocardial catecholamine concentrations in patients with congestive heart failure. Am J Cardiol 60:316–321CrossRefPubMedGoogle Scholar
  422. Pifl C et al (2014) Is Parkinson&#039;s Disease a Vesicular Dopamine Storage Disorder? Evidence from a Study in Isolated Synaptic Vesicles of Human and Nonhuman Primate Striatum. J Neurosci 34:8210CrossRefPubMedGoogle Scholar
  423. Pifl C, Reither H, Del Rey NL-G, Cavada C, Obeso JA, Blesa J (2017) Early paradoxical increase of dopamine: a neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys. Front Neuroanat 11:46–46.  https://doi.org/10.3389/fnana.2017.00046 CrossRefPubMedPubMedCentralGoogle Scholar
  424. Pilipović I, Vidić-Danković B, Perišić M, Radojević K, Čolić M, Todorović V, Leposavić G (2008) Sexual dimorphism in the catecholamine-containing thymus microenvironment: a role for gonadal hormones. J Neuroimmunol 195:7–20.  https://doi.org/10.1016/j.jneuroim.2007.12.006 CrossRefPubMedGoogle Scholar
  425. Pinoli M, Marino F, Cosentino M (2017) Dopaminergic regulation of innate immunity: a review. J NeuroImmune Pharmacol 12:602–623.  https://doi.org/10.1007/s11481-017-9749-2 CrossRefPubMedGoogle Scholar
  426. Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002) Δ9-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 948:155–158.  https://doi.org/10.1016/S0006-8993(02)03055-X CrossRefPubMedGoogle Scholar
  427. Pivonello R, Ferone D, de Herder WW, de Krijger RR, Waaijers M, Mooij DM, van Koetsveld PM, Barreca A, del Basso de Caro ML, Lombardi G, Colao A, Lamberts SWJ, Hofland LJ (2004) Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J Clin Endocrinol Metab 89:4493–4502.  https://doi.org/10.1210/jc.2003-031746 CrossRefPubMedGoogle Scholar
  428. Podvin S, Bundey R, Toneff T, Ziegler M, Hook V (2015) Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Mol Cell Neurosci 68:177–185.  https://doi.org/10.1016/j.mcn.2015.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  429. Pontieri FE, Colosimo C (2010) Dopaminergic system in peripheral blood mononuclear cells in Parkinson's disease. Mov Disord 25:125–126.  https://doi.org/10.1002/mds.22742 CrossRefPubMedGoogle Scholar
  430. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562.  https://doi.org/10.1523/JNEUROSCI.5578-03.2004 CrossRefPubMedGoogle Scholar
  431. Pothos E, Rada P, Mark GP, Hoebel BG (1991) Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res 566:348–350.  https://doi.org/10.1016/0006-8993(91)91724-F CrossRefPubMedGoogle Scholar
  432. Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118CrossRefPubMedGoogle Scholar
  433. Prado C, Contreras F, Gonzalez H, Diaz P, Elgueta D, Barrientos M, Herrada AA, Lladser A, Bernales S, Pacheco R (2012) Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol 188:3062–3070.  https://doi.org/10.4049/jimmunol.1103096 CrossRefPubMedGoogle Scholar
  434. Prado C, Gaiazzi M, González H, Ugalde V, Figueroa A, Osorio-Barrios FJ, López E, Lladser A, Rasini E, Marino F, Zaffaroni M, Cosentino M, Pacheco R (2018) Dopaminergic stimulation of myeloid antigen-presenting cells attenuates signal transducer and activator of transcription 3-activation Favouring the development of experimental autoimmune encephalomyelitis. Front Immunol 9.  https://doi.org/10.3389/fimmu.2018.00571
  435. Prieto-Lloret J et al (2015) Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia. J Physiol 593:2459–2477.  https://doi.org/10.1113/JP270274 CrossRefPubMedPubMedCentralGoogle Scholar
  436. Qiu YH, Peng YP, Jiang JM, Wang JJ (2004) Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function. Neuroimmunomodulation 11:75–83.  https://doi.org/10.1159/000075316 CrossRefPubMedGoogle Scholar
  437. Quelhas-Santos J, Serrão MP, Soares-Silva I, Fernandes-Cerqueira C, Simões-Silva L, Pinho MJ, Remião F, Sampaio-Maia B, Desir GV, Pestana M (2015) Renalase regulates peripheral and central dopaminergic activities. Am J Physiol Ren Physiol 308:F84–F91.  https://doi.org/10.1152/ajprenal.00274.2014 CrossRefGoogle Scholar
  438. Rajda C, Bencsik K, Vécsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124:93–100.  https://doi.org/10.1016/S0165-5728(02)00002-4 CrossRefPubMedGoogle Scholar
  439. Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O (2008) Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlation. Neurology 70:1403–1410.  https://doi.org/10.1212/01.wnl.0000285082.18969.3a CrossRefPubMedGoogle Scholar
  440. Raskind MA, Peskind ER, Holmes C, Goldstein DS (1999) Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer&#x2019;s disease. Biol Psychiatry 46:756–765.  https://doi.org/10.1016/S0006-3223(99)00008-6 CrossRefPubMedGoogle Scholar
  441. Regitz V, Bossaller C, Strasser R, Schuler S, Hetzer R, Fleck E (1990) Myocardial catecholamine content after heart transplantation. Circulation 82:620–623CrossRefPubMedGoogle Scholar
  442. Reith ME, Li MY, Yan QS (1997) Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology 134:309–317CrossRefPubMedGoogle Scholar
  443. Reuss B, Unsicker K (2001) Atypical neuroleptic drugs downregulate dopamine sensitivity in rat cortical and striatal astrocytes. Mol Cell Neurosci 18:197–209.  https://doi.org/10.1006/mcne.2001.1017 CrossRefPubMedGoogle Scholar
  444. Ricci A, Veglio F, Amenta F (1995) Radioligand binding characterization of putative dopamine D3 receptor in human peripheral blood lymphocytes with [3H]7-OH-DPAT. J Neuroimmunol 58:139–144CrossRefPubMedGoogle Scholar
  445. Rice ME, Richards CD, Nedergaard S, Hounsgaard J, Nicholson C, Greenfield SA (1994) Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro. Exp Brain Res 100:395–406.  https://doi.org/10.1007/BF02738400 CrossRefPubMedGoogle Scholar
  446. Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MW (2001) Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 86:2734–2742.  https://doi.org/10.1210/jcem.86.6.7569 CrossRefPubMedGoogle Scholar
  447. Ripley TL, Jaworski J, Randall PK, Gonzales RA (1997) Repeated perfusion with elevated potassium in in vivo microdialysis--a method for detecting small changes in extracellular dopamine. J Neurosci Methods 78:7–14CrossRefPubMedGoogle Scholar
  448. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren P-O, Caicedo A (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54.  https://doi.org/10.1016/j.cmet.2011.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  449. Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:336–342.  https://doi.org/10.1016/j.tins.2013.03.003 CrossRefPubMedGoogle Scholar
  450. Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11:1376–1377.  https://doi.org/10.1038/nn.2219 CrossRefPubMedPubMedCentralGoogle Scholar
  451. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M, Gallini CA, Beal C, van Hylckama-Vlieg JET, Ballal SA, Morgan XC, Glickman JN, Gevers D, Huttenhower C, Garrett WS (2014) Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. Isme j 8:1403–1417.  https://doi.org/10.1038/ismej.2014.3 CrossRefPubMedPubMedCentralGoogle Scholar
  452. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA (2011) Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J NeuroImmune Pharmacol 6:442–465.  https://doi.org/10.1007/s11481-011-9292-5 CrossRefPubMedPubMedCentralGoogle Scholar
  453. Rubi B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 151:5570–5581.  https://doi.org/10.1210/en.2010-0745 CrossRefPubMedGoogle Scholar
  454. Rubí B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: Let’s seek the balance. Endocrinology 151:5570–5581.  https://doi.org/10.1210/en.2010-0745 CrossRefPubMedGoogle Scholar
  455. Rubi B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P (2005) Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem 280:36824–36832.  https://doi.org/10.1074/jbc.M505560200 CrossRefPubMedGoogle Scholar
  456. Russell WJ, Frewin DB, Jonsson JR (1982) Pulmonary extraction of catecholamines in critically ill patients. Anaesth Intensive Care 10:319–323CrossRefPubMedGoogle Scholar
  457. Rysz M, Bromek E, Haduch A, Sadakierska-Chudy A, Daniel WA (2015) Damage to the brain serotonergic system increases the expression of liver cytochrome P450. Drug Metab Dispos 43:1345CrossRefPubMedGoogle Scholar
  458. Saha B, Mondal AC, Basu S, Dasgupta PS (2001) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1:1363–1374CrossRefPubMedGoogle Scholar
  459. Sakic B, Lacosta S, Denburg JA, Szechtman H (2002) Altered neurotransmission in brains of autoimmune mice: pharmacological and neurochemical evidence. J Neuroimmunol 129:84–96.  https://doi.org/10.1016/S0165-5728(02)00171-6 CrossRefPubMedGoogle Scholar
  460. Salinas AG, Davis MI, Lovinger DM, Mateo Y (2016) Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 108:275–283.  https://doi.org/10.1016/j.neuropharm.2016.03.049 CrossRefPubMedPubMedCentralGoogle Scholar
  461. Salvatore MF, Pruett BS, Dempsey C, Fields V (2012) Comprehensive profiling of dopamine regulation in substantia nigra and ventral tegmental area. Journal of visualized experiments : JoVE:10.3791/4171 4171  https://doi.org/10.3791/4171
  462. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32:586–587CrossRefPubMedGoogle Scholar
  463. Santambrogio L, Lipartiti M, Bruni A, Toso RD (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45:113–119.  https://doi.org/10.1016/0165-5728(93)90170-4 CrossRefPubMedGoogle Scholar
  464. Sasa S, Blank CL (1977) Determination of serotonin and dopamine in mouse brain tissue by high performance liquid chromatography with electrochemical detection. Anal Chem 49:354–359CrossRefPubMedGoogle Scholar
  465. Scarcella DL, Bryan-Lluka LJ (1995) A kinetic investigation of the pulmonary metabolism of dopamine in rats shows marked differences compared with noradrenaline. Naunyn Schmiedeberg's Arch Pharmacol 351:491–499CrossRefGoogle Scholar
  466. Schafer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84:361–376CrossRefPubMedGoogle Scholar
  467. Scheiermann C, Frenette PS, Hidalgo A (2015) Regulation of leucocyte homeostasis in the circulation. Cardiovasc Res 107:340–351.  https://doi.org/10.1093/cvr/cvv099 CrossRefPubMedPubMedCentralGoogle Scholar
  468. Scheller C et al (2010) Increased dopaminergic neurotransmission in therapy-naive asymptomatic HIV patients is not associated with adaptive changes at the dopaminergic synapses. Journal of neural transmission (Vienna, Austria : 1996) 117:699–705.  https://doi.org/10.1007/s00702-010-0415-6 CrossRefGoogle Scholar
  469. Schemann M, Camilleri M (2013) Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 144:698–704.e694.  https://doi.org/10.1053/j.gastro.2013.01.040 CrossRefPubMedPubMedCentralGoogle Scholar
  470. Scheuermann DW (1993) Comparative morphology, cytochemistry and innervation of chromaffin tissue in vertebrates. J Anat 183(Pt 2):327–342PubMedPubMedCentralGoogle Scholar
  471. Scheuermann DW, Stilman C, De Groodt-Lasseel MHA (1988) Microspectrofluorimetric analysis of the formaldehyde-induced fluorophores of 5-hydroxytryptamine and dopamine in intrapulmonary neuroepithelial bodies after administration ofl-hydroxytryptophan andl-DOPA. Histochemistry 88:219–225.  https://doi.org/10.1007/BF00570277 CrossRefPubMedGoogle Scholar
  472. Schober A, Huber K, Fey J, Unsicker K (1998) Distinct populations of macrophages in the adult rat adrenal gland: a subpopulation with neurotrophin-4-like immunoreactivity. Cell Tissue Res 291:365–373CrossRefPubMedGoogle Scholar
  473. Schoenemann HM, Failla ML, Rosebrough RW (1990) Cardiac and splenic levels of norepinephrine and dopamine in copper deficient pigs and rats. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 97:387–391.  https://doi.org/10.1016/0742-8413(90)90159-7 CrossRefGoogle Scholar
  474. Schwarz JM, Bilbo SD (2013) Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J Neurosci 33:961–971.  https://doi.org/10.1523/jneurosci.2516-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  475. Schwerdt HN, Zhang E, Kim MJ, Yoshida T, Stanwicks L, Amemori S, Dagdeviren HE, Langer R, Cima MJ, Graybiel AM (2018) Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model. Communications Biology 1:144.  https://doi.org/10.1038/s42003-018-0147-y CrossRefPubMedPubMedCentralGoogle Scholar
  476. Scimemi A, Beato M (2009) Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 40:289–306.  https://doi.org/10.1007/s12035-009-8087-7 CrossRefPubMedPubMedCentralGoogle Scholar
  477. Scozzi D et al. (2012) Increased levels of plasmatic dopamine in human small cell lung cancer. Eur Respir J 40Google Scholar
  478. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719CrossRefPubMedGoogle Scholar
  479. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774.  https://doi.org/10.1038/nri3070 CrossRefPubMedPubMedCentralGoogle Scholar
  480. Shichijo K, Sakurai-Yamashita Y, Sekine I, Taniyama K (1997) Neuronal release of endogenous dopamine from corpus of Guinea pig stomach. Am J Phys 273:G1044–G1050Google Scholar
  481. Shintani F, Kanba S, Nakaki T, Nibuya M, Kinoshita N, Suzuki E, Yagi G, Kato R, Asai M (1993) Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci 13:3574–3581CrossRefPubMedGoogle Scholar
  482. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol 45:494–497.  https://doi.org/10.1134/S0003683809050068 CrossRefGoogle Scholar
  483. Shou M, Ferrario CR, Schultz KN, Robinson TE, Kennedy RT (2006) Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal Chem 78:6717–6725.  https://doi.org/10.1021/ac0608218 CrossRefPubMedGoogle Scholar
  484. Silverman SM, Wong WT (2018) Microglia in the retina: roles in development, maturity, and disease. Annual review of vision science 4:45–77.  https://doi.org/10.1146/annurev-vision-091517-034425 CrossRefPubMedGoogle Scholar
  485. Singaram C, Ashraf W, Gaumnitz EA, Torbey C, Sengupta A, Pfeiffer R, Quigley EM (1995) Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation. Lancet 346:861–864CrossRefPubMedGoogle Scholar
  486. Sizova D, Velazquez H, Sampaio-Maia B, Quelhas-Santos J, Pestana M, Desir GV (2013) Renalase regulates renal dopamine and phosphate metabolism. Am J Physiol Ren Physiol 305:F839–F844.  https://doi.org/10.1152/ajprenal.00616.2012 CrossRefGoogle Scholar
  487. Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci U S A 93:11202–11207CrossRefPubMedPubMedCentralGoogle Scholar
  488. Smith JE, Co C, Coller MD, Hemby SE, Martin TJ (2006) Self-administered heroin and cocaine combinations in the rat: additive reinforcing effects-supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 31:139–150.  https://doi.org/10.1038/sj.npp.1300786 CrossRefGoogle Scholar
  489. Snider SR, Kuchel O (1983) Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr Rev 4:291–309.  https://doi.org/10.1210/edrv-4-3-291 CrossRefPubMedGoogle Scholar
  490. Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N (2018) Dopamine and addiction: what have we learned from 40 years of research. Journal of neural transmission (Vienna, Austria : 1996).  https://doi.org/10.1007/s00702-018-1957-2
  491. Song C, Horrobin DF, Leonard BE (2006) The comparison of changes in behavior, neurochemistry, endocrine, and immune functions after different routes, doses and durations of administrations of IL-1beta in rats. Pharmacopsychiatry 39:88–99.  https://doi.org/10.1055/s-2006-941557 CrossRefPubMedGoogle Scholar
  492. Sookhai S, Wang JH, McCourt M, O'Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor–independent mechanism. Surgery 126:314–322.  https://doi.org/10.1016/S0039-6060(99)70171-6 CrossRefPubMedGoogle Scholar
  493. Sperker B, Werner U, Mürdter TE, Tekkaya C, Fritz P, Wacke R, Adam U, Gerken M, Drewelow B, Kroemer HK (2000) Expression and function of beta-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn Schmiedeberg's Arch Pharmacol 362:110–115CrossRefGoogle Scholar
  494. Spiegel A et al (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8:1123–1131.  https://doi.org/10.1038/ni1509 CrossRefPubMedGoogle Scholar
  495. Spühler IA, Hauri A (2013) Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp Simulato. r PLOS ONE 8:e71615  https://doi.org/10.1371/journal.pone.0071615
  496. Staal RG, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346.  https://doi.org/10.1038/nn1205 CrossRefPubMedGoogle Scholar
  497. Stagkourakis S, Kim H, Lyons DJ, Broberger C (2016) Dopamine autoreceptor regulation of a hypothalamic dopaminergic network. Cell Rep 15:735–747.  https://doi.org/10.1016/j.celrep.2016.03.062 CrossRefPubMedPubMedCentralGoogle Scholar
  498. Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S (2004) A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Primary care companion to the Journal of clinical psychiatry 6:159–166CrossRefPubMedPubMedCentralGoogle Scholar
  499. Stamford JA, Kruk ZL, Palij P, Millar J (1988) Diffusion and uptake of dopamine in rat caudate and nucleus accumbens compared using fast cyclic voltammetry. Brain Res 448:381–385CrossRefPubMedGoogle Scholar
  500. Stanojevic S, Dimitrijevic M, Kustrimovic N, Mitic K, Vujic V, Leposavic G (2013) Adrenal hormone deprivation affects macrophage catecholamine metabolism and beta2-adrenoceptor density, but not propranolol stimulation of tumour necrosis factor-alpha production. Exp Physiol 98:665–678.  https://doi.org/10.1113/expphysiol.2012.070524 CrossRefPubMedGoogle Scholar
  501. Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, Machold RP, Jones KT, de Vaca SC, Reith MEA, Carr KD, Rice ME (2015) Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun 6:8543–8543.  https://doi.org/10.1038/ncomms9543 CrossRefPubMedPubMedCentralGoogle Scholar
  502. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133.  https://doi.org/10.1016/j.brainres.2018.03.015 CrossRefPubMedGoogle Scholar
  503. Strobel G, Werle E, Weicker H (1990) Isomer specific kinetics of dopamine beta-hydroxylase and arylsulfatase towards catecholamine sulfates. Biochem Int 20:343–351PubMedGoogle Scholar
  504. Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–863.  https://doi.org/10.1038/sj.npp.1300619 CrossRefPubMedGoogle Scholar
  505. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69:628–649.  https://doi.org/10.1016/j.neuron.2011.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  506. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci 97:11869–11874.  https://doi.org/10.1073/pnas.97.22.11869 CrossRefPubMedGoogle Scholar
  507. Sulzer D, Cragg SJ, Rice ME (2016) Striatal dopamine neurotransmission: regulation of release and uptake basal. ganglia 6:123-148  https://doi.org/10.1016/j.baga.2016.02.001
  508. Sulzer D et al (2017) T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546:656.  https://doi.org/10.1038/nature22815 https://www.nature.com/articles/nature22815-supplementary-information. Accessed in 2018CrossRefPubMedPubMedCentralGoogle Scholar
  509. Suominen T, Uutela P, Ketola RA, Bergquist J, Hillered L, Finel M, Zhang H, Laakso A, Kostiainen R (2013) Determination of serotonin and dopamine metabolites in human brain microdialysis and cerebrospinal fluid samples by UPLC-MS/MS: discovery of intact glucuronide and sulfate conjugates. PLoS One 8:e68007.  https://doi.org/10.1371/journal.pone.0068007 CrossRefPubMedPubMedCentralGoogle Scholar
  510. Suominen T, Piepponen TP, Kostiainen R (2015) Permeation of dopamine sulfate through the blood-brain barrier. PLoS One 10:e0133904.  https://doi.org/10.1371/journal.pone.0133904 CrossRefPubMedPubMedCentralGoogle Scholar
  511. Swiercz R, Grzelinska Z, Gralewicz S, Wasowicz W (2009) Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride. Int J Occup Med Environ Health 22:107–113.  https://doi.org/10.2478/v10001-009-0012-9 CrossRefPubMedGoogle Scholar
  512. Takahashi N, Nagai Y, Ueno S, Saeki Y, Yanagihara T (1992) Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudogenes. FEBS Lett 314:23–25CrossRefPubMedGoogle Scholar
  513. Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedeberg's Arch Pharmacol 366:620–623.  https://doi.org/10.1007/s00210-002-0640-0 CrossRefGoogle Scholar
  514. Tanda G, Pontieri FE, Chiara GD (1997) Cannabinoid and Heroin Activation of Mesolimbic Dopamine Transmission by a Common μ&lt;sub&gt;1&lt;/sub&gt; Opioid Receptor Mechanism. Science 276:2048.  https://doi.org/10.1126/science.276.5321.2048 CrossRefPubMedGoogle Scholar
  515. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R, Liao MY, Tu X, Liao YH, Cheng X (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232.  https://doi.org/10.1007/s00395-011-0232-6 CrossRefPubMedGoogle Scholar
  516. Tareke E, Bowyer JF, Doerge DR (2007) Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun Mass Spectrom 21:3898–3904.  https://doi.org/10.1002/rcm.3295 CrossRefPubMedGoogle Scholar
  517. Teitelman G, Joh TH, Reis DJ (1981) Transformation of catecholaminergic precursors into glucagon (a) cells in mouse embryonic pancreas. Proc Natl Acad Sci U S A 78:5225–5229CrossRefPubMedPubMedCentralGoogle Scholar
  518. Teunis MA, Heijnen CJ, Cools AR, Kavelaars A (2004) Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 29:1058–1064.  https://doi.org/10.1016/j.psyneuen.2003.09.007 CrossRefPubMedGoogle Scholar
  519. Tiwari A, Moghal M, Meleagros L (2006) Life threatening abdominal complications following cocaine abuse. J R Soc Med 99:51–52.  https://doi.org/10.1258/jrsm.99.2.51 CrossRefPubMedPubMedCentralGoogle Scholar
  520. Tolstanova G, Deng X, Ahluwalia A, Paunovic B, Prysiazhniuk A, Ostapchenko L, Tarnawski A, Sandor Z, Szabo S (2015) Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease. Dig Dis Sci 60:2963–2975.  https://doi.org/10.1007/s10620-015-3698-5 CrossRefPubMedGoogle Scholar
  521. Tomassoni D, Traini E, Mancini M, Bramanti V, Mahdi SS, Amenta F (2015) Dopamine, vesicular transporters, and dopamine receptor expression in rat major salivary glands. Am J Phys Regul Integr Comp Phys 309:R585–R593.  https://doi.org/10.1152/ajpregu.00455.2014 CrossRefGoogle Scholar
  522. Tor-Agbidye J, Yamamoto B, Bowyer JF (2001) Seizure activity and hyperthermia potentiate the increases in dopamine and serotonin extracellular levels in the amygdala during exposure to d-amphetamine. Toxicol Sci 60:103–111.  https://doi.org/10.1093/toxsci/60.1.103 CrossRefPubMedGoogle Scholar
  523. Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003) Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278:2731–2739.  https://doi.org/10.1074/jbc.M201926200 CrossRefPubMedGoogle Scholar
  524. Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio Thompson-Bonilla M, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20:291–295.  https://doi.org/10.1038/nm.3479 CrossRefPubMedPubMedCentralGoogle Scholar
  525. Trabold B, Gruber M, Frohlich D (2007) Functional and phenotypic changes in polymorphonuclear neutrophils induced by catecholamines. Scandinavian cardiovascular journal : SCJ 41:59–64.  https://doi.org/10.1080/14017430601085948 CrossRefPubMedGoogle Scholar
  526. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527.  https://doi.org/10.1371/journal.pbio.1000527 CrossRefPubMedPubMedCentralGoogle Scholar
  527. Trout SJ, Kruk ZL (1992) Differences in evoked dopamine efflux in rat caudate putamen, nucleus accumbens and tuberculum olfactorium in the absence of uptake inhibition: influence of autoreceptors. Br J Pharmacol 106:452–458CrossRefPubMedPubMedCentralGoogle Scholar
  528. Tsao CW, Lin YS, Cheng JT (1997) Effect of dopamine on immune cell proliferation in mice. Life sciences 61:Pl 361-371Google Scholar
  529. Tsao CW, Lin YS, Cheng JT (1998) Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci 62:Pl 335-344Google Scholar
  530. Ugrumov MV (2009) Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J Chem Neuroanat 38:241–256.  https://doi.org/10.1016/j.jchemneu.2009.08.004 CrossRefPubMedGoogle Scholar
  531. Uutela P, Reinila R, Harju K, Piepponen P, Ketola RA, Kostiainen R (2009) Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry. Anal Chem 81:8417–8425.  https://doi.org/10.1021/ac901320z CrossRefPubMedGoogle Scholar
  532. Valdearcos M et al (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:185–197.e183.  https://doi.org/10.1016/j.cmet.2017.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  533. Van Loon GR (1983) Plasma dopamine: regulation and significance. Fed Proc 42:3012–3018PubMedGoogle Scholar
  534. Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, Aragona BJ (2014) Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci 40:3041–3054.  https://doi.org/10.1111/ejn.12709 CrossRefPubMedPubMedCentralGoogle Scholar
  535. Vargovic P, Ukropec J, Laukova M, Cleary S, Manz B, Pacak K, Kvetnansky R (2011) Adipocytes as a new source of catecholamine production. FEBS Lett 585:2279–2284.  https://doi.org/10.1016/j.febslet.2011.06.001 CrossRefPubMedGoogle Scholar
  536. Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, Wightman RM (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87:1284–1295CrossRefPubMedGoogle Scholar
  537. Vicario I, Rigual R, Obeso A, Gonzalez C (2000) Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro American journal of physiology. Cell Physiol 278:C490–C499.  https://doi.org/10.1152/ajpcell.2000.278.3.C490 CrossRefGoogle Scholar
  538. Vieira-Coelho MA, Soares-da-Silva P (1996) Ontogenic aspects of liver and kidney catechol-O-methyltransferase sensitivity to tolcapone. Br J Pharmacol 117:516–520CrossRefPubMedPubMedCentralGoogle Scholar
  539. Vieira-Coelho MA, Teixeira VA, Finkel Y, Soares-Da-Silva P, Bertorello AM (1998) Dopamine-dependent inhibition of jejunal Na+-K+-ATPase during high-salt diet in young but not in adult rats. Am J Phys 275:G1317–G1323Google Scholar
  540. Villageliu D, Lyte M (2018) Dopamine production in enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One 13:e0207038.  https://doi.org/10.1371/journal.pone.0207038 CrossRefPubMedPubMedCentralGoogle Scholar
  541. Villaran RF et al (2010) Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem 114:1687–1700.  https://doi.org/10.1111/j.1471-4159.2010.06879.x CrossRefPubMedGoogle Scholar
  542. Villar-Cheda B, Dominguez-Meijide A, Valenzuela R, Granado N, Moratalla R, Labandeira-Garcia JL (2014) Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol Aging 35:1726–1738.  https://doi.org/10.1016/j.neurobiolaging.2014.01.017 CrossRefPubMedGoogle Scholar
  543. Vohra PK, Hoeppner LH, Sagar G, Dutta SK, Misra S, Hubmayr RD, Mukhopadhyay D (2012) Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury American journal of physiology. Lung cellular and molecular physiology 302:L185–L192.  https://doi.org/10.1152/ajplung.00274.2010 CrossRefPubMedGoogle Scholar
  544. Volkow Nora D, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725.  https://doi.org/10.1016/j.cell.2015.07.046 CrossRefPubMedGoogle Scholar
  545. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemannn R, Gatley SJ, MacGregor R, Wolf AP (1996) Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 14:159–168.  https://doi.org/10.1016/0893-133x(95)00073-m CrossRefPubMedGoogle Scholar
  546. Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830.  https://doi.org/10.1038/386827a0 CrossRefPubMedGoogle Scholar
  547. Volkow ND, Wang G-J, Fowler JS, Tomasi D, Telang F, Baler R (2010) Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. BioEssays : news and reviews in molecular, cellular and developmental biology 32:748–755.  https://doi.org/10.1002/bies.201000042 CrossRefGoogle Scholar
  548. Volkow ND, Wang G-J, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46.  https://doi.org/10.1016/j.tics.2010.11.001 CrossRefGoogle Scholar
  549. Wagner J, Palfreyman M, Zraika M (1979a) Determination of dopa, dopamine, dopac, epinephrine, norepinephrine, alpha-monofluoromethyldopa and alpha-difluoromethyldopa in various tissues of mice and rats using reversed-phase ion-pair liquid chromatography with electrochemical detection. J Chromatogr 164:41–54CrossRefPubMedGoogle Scholar
  550. Wagner J, Palfreyman M, Zraika M (1979b) Determination of DOPA, dopamine, DOPAC, epinephrine, norepinephrine, α-monofluoromethyldopa and α-difluoromethyldopa in various tissues of mice and rats using reversed-phase ion-pair liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 164:41–54.  https://doi.org/10.1016/S0378-4347(00)81570-4 CrossRefGoogle Scholar
  551. Wahbe F, Hagege J, Loreau N, Ardaillou R (1982) Endogenous dopamine synthesis and dopa-decarboxylase activity in rat renal cortex. Mol Cell Endocrinol 27:45–54CrossRefPubMedGoogle Scholar
  552. Wahlstrom D, Collins P, White T, Luciana M (2010) Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 72:146–159.  https://doi.org/10.1016/j.bandc.2009.10.013 CrossRefPubMedGoogle Scholar
  553. Wakabayashi KT, Bruno MJ, Bass CE, Park J (2016) Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain. Analyst 141:3746–3755.  https://doi.org/10.1039/c6an00196c CrossRefPubMedGoogle Scholar
  554. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980.  https://doi.org/10.1523/jneurosci.4363-08.2009 CrossRefPubMedGoogle Scholar
  555. Wanat MJ, Willuhn I, Clark JJ, Phillips PE (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Current drug abuse reviews 2:195–213CrossRefPubMedPubMedCentralGoogle Scholar
  556. Wang HY, Undie AS, Friedman E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 48:988–994PubMedGoogle Scholar
  557. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, Reddy A, Somogyi AA, Hutchinson MR, Watkins LR, Yin H (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A 109:6325–6330.  https://doi.org/10.1073/pnas.1200130109 CrossRefPubMedPubMedCentralGoogle Scholar
  558. Wang X, Villar VA, Tiu A, Upadhyay KK, Cuevas S (2018) Dopamine D2 receptor upregulates leptin and IL-6 in adipocytes. J Lipid Res 59:607–614.  https://doi.org/10.1194/jlr.M081000 CrossRefPubMedPubMedCentralGoogle Scholar
  559. Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, Hashimoto K, Yoshie O (2006a) Dopamine Selectively Induces Migration and Homing of Naive CD8&lt;sup&gt;+&lt;/sup&gt; T Cells via Dopamine Receptor D3. J Immunol 176:848CrossRefPubMedGoogle Scholar
  560. Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, Hashimoto K, Yoshie O (2006b) Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 176:848–856CrossRefPubMedGoogle Scholar
  561. Weihe E, Nohr D, Michel S, Muller S, Zentel HJ, Fink T, Krekel J (1991) Molecular anatomy of the neuro-immune connection. Int J Neurosci 59:1–23CrossRefPubMedGoogle Scholar
  562. Weinman EJ, Biswas R, Steplock D, Wang P, Lau YS, Desir GV, Shenolikar S (2011) Increased renal dopamine and acute renal adaptation to a high-phosphate diet. Am J Physiol Ren Physiol 300:F1123–F1129.  https://doi.org/10.1152/ajprenal.00744.2010 CrossRefGoogle Scholar
  563. Weintraub ST, Stavinoha WB, Pike RL, Morgan WW, Modak AT, Koslow SH, Blank L (1975) Evaluation of the necessity for rapid inactivation of brain enzymes prior to analysis of norepinephrine dopamine and serotonin in the mouse. Life Sci 17:1423–1427.  https://doi.org/10.1016/0024-3205(75)90162-9 CrossRefPubMedGoogle Scholar
  564. Weisheit CK, Engel DR, Kurts C (2015) Dendritic cells and macrophages: sentinels in the kidney clinical. J Am Soc Nephrol 10:1841–1851.  https://doi.org/10.2215/cjn.07100714 CrossRefGoogle Scholar
  565. Weiss F, Parsons LH, Schulteis G, Hyytia P, Lorang MT, Bloom FE, Koob GF (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485CrossRefPubMedGoogle Scholar
  566. Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci U S A 97:4321–4326CrossRefPubMedPubMedCentralGoogle Scholar
  567. Wenisch C, Parschalk B, Weiss A, Zedwitz-Liebenstein K, Hahsler B, Wenisch H, Georgopoulos A, Graninger W (1996) High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol 3:423–428PubMedPubMedCentralGoogle Scholar
  568. White SR, Bhatnagar RK, Bardo MT (1983) Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem 40:1771–1773.  https://doi.org/10.1111/j.1471-4159.1983.tb08156.x CrossRefPubMedGoogle Scholar
  569. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with 'reward'. J Neurochem 82:721–735CrossRefPubMedGoogle Scholar
  570. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758CrossRefPubMedPubMedCentralGoogle Scholar
  571. Wightman RM, Heien MLAV, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046–2054.  https://doi.org/10.1111/j.1460-9568.2007.05772.x CrossRefPubMedGoogle Scholar
  572. Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, France CP, Gore JC, Daws LC, Avison MJ, Galli A (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5:e274.  https://doi.org/10.1371/journal.pbio.0050274 CrossRefPubMedPubMedCentralGoogle Scholar
  573. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996a) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703CrossRefPubMedGoogle Scholar
  574. Wilson JM, Levey AI, Rajput A, Ang L, Guttman M, Shannak K, Niznik HB, Hornykiewicz O, Pifl C, Kish SJ (1996b) Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology 47:718–726CrossRefPubMedGoogle Scholar
  575. Winner BM, Zhang H, Farthing MM, Karchalla LM, Lookingland KJ, Goudreau JL (2017) Metabolism of dopamine in nucleus Accumbens astrocytes is preserved in aged mice exposed to MPTP. Front Aging Neurosci 9:410.  https://doi.org/10.3389/fnagi.2017.00410 CrossRefPubMedPubMedCentralGoogle Scholar
  576. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494.  https://doi.org/10.1038/nrn1406 CrossRefPubMedGoogle Scholar
  577. Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic input is critical for Hippocampus-dependent working memory. J Neurosci 28:7797.  https://doi.org/10.1523/JNEUROSCI.1885-08.2008 CrossRefPubMedGoogle Scholar
  578. Withers SB et al (2017) Eosinophils are key regulators of perivascular adipose tissue and vascular functionality, Sci Report. 7:44571.  https://doi.org/10.1038/srep44571 https://www.nature.com/articles/srep44571-supplementary-information. Accessed in 2018
  579. Witkovsky P (2004) Dopamine and retinal function Documenta. Ophthalmologica 108:17–39.  https://doi.org/10.1023/B:DOOP.0000019487.88486.0a CrossRefGoogle Scholar
  580. Wolfovitz E, Grossman E, Folio CJ, Keiser HR, Kopin IJ, Goldstein DS (1993) Derivation of urinary dopamine from plasma dihydroxyphenylalanine in humans. Clinical science (London, England : 1979) 84:549–557CrossRefGoogle Scholar
  581. Wolkersdorfer GW et al (1999) Lymphocytes stimulate dehydroepiandrosterone production through direct cellular contact with adrenal zona reticularis cells: a novel mechanism of immune-endocrine interaction. J Clin Endocrinol Metab 84:4220–4227.  https://doi.org/10.1210/jcem.84.11.6110 CrossRefPubMedGoogle Scholar
  582. Wu X, French ED (2000) Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology 39:391–398CrossRefPubMedGoogle Scholar
  583. Wu H-J, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3:4–14.  https://doi.org/10.4161/gmic.19320 CrossRefPubMedPubMedCentralGoogle Scholar
  584. Wu Q, Reith MEA, Wightman RM, Kawagoe KT, Garris PA (2001) Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 112:119–133.  https://doi.org/10.1016/S0165-0270(01)00459-9 CrossRefPubMedGoogle Scholar
  585. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, Peterson LE, Chan L, Smith CW, Ballantyne CM (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038.  https://doi.org/10.1161/circulationaha.106.638379 CrossRefPubMedGoogle Scholar
  586. Wu X-H, Li YY, Zhang PP, Qian KW, Ding JH, Hu G, Weng SJ, Yang XL, Zhong YM (2015) Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia. Invest Ophthalmol Vis Sci 56:967–977.  https://doi.org/10.1167/iovs.13-13362 CrossRefPubMedGoogle Scholar
  587. Wu C, Garamszegi SP, Xie X, Mash DC (2017) Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci 11:386–386.  https://doi.org/10.3389/fnhum.2017.00386 CrossRefPubMedPubMedCentralGoogle Scholar
  588. Xue R, Zhang H, Pan J, du Z, Zhou W, Zhang Z, Tian Z, Zhou R, Bai L (2018) Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Front Immunol 9:2398–2398.  https://doi.org/10.3389/fimmu.2018.02398 CrossRefPubMedPubMedCentralGoogle Scholar
  589. Yamamoto T, Polinsky RJ, Goldstein DS, Baucom CE, Kopin IJ (1996) Plasma sulfoconjugated dopamine levels are normal in patients with autonomic failure. J Lab Clin Med 128:488–491CrossRefPubMedGoogle Scholar
  590. Yan Q-S (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol (Fayetteville, NY) 19:1-7  https://doi.org/10.1016/S0741-8329(99)00006-3
  591. Yang S, Yao B, Zhou Y, Yin H, Zhang MZ, Harris RC (2012) Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury. Am J Physiol Ren Physiol 302:F742–F749.  https://doi.org/10.1152/ajprenal.00583.2011 CrossRefGoogle Scholar
  592. Yang TT, Lin C, Hsu CT, Wang TF, Ke FY, Kuo YM (2013) Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct Funct 218:1051–1060.  https://doi.org/10.1007/s00429-012-0446-x CrossRefPubMedGoogle Scholar
  593. Yeh SH-H, Lin MH, Kong FL, Chang CW, Hwang LC, Lin CF, Hwang JJ, Liu RS (2014) Evaluation of inhibitory effect of recreational drugs on dopaminergic terminal neuron by PET and whole-body autoradiography. Biomed Res Int 2014:11–11.  https://doi.org/10.1155/2014/157923 CrossRefGoogle Scholar
  594. Yi C-X, la Fleur SE, Fliers E, Kalsbeek A (2010) The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:416–431.  https://doi.org/10.1016/j.bbadis.2010.01.006 CrossRefGoogle Scholar
  595. Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol (Fayetteville, NY) 22:107–115CrossRefGoogle Scholar
  596. Yoneda S, Alexander N, Vlachakis ND (1983) Enzymatic deconjugation of catecholamines in human and rat plasma and red blood cell lysate. Life Sci 33:935–942CrossRefPubMedGoogle Scholar
  597. Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992) Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol (Fayetteville, NY) 9:17–22CrossRefGoogle Scholar
  598. Yoshizumi M et al (1998) Changes in plasma free and sulfoconjugated dopamine in patients with congenital heart disease who underwent cardiac operation. The Japanese journal of thoracic and cardiovascular surgery : official publication of the Japanese Association for Thoracic Surgery = Nihon Kyobu Geka Gakkai zasshi 46:651–656CrossRefGoogle Scholar
  599. Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321.  https://doi.org/10.1016/j.expneurol.2008.08.015 CrossRefPubMedGoogle Scholar
  600. Zanassi P, Paolillo M, Montecucco A, Avvedimento EV, Schinelli S (1999) Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552CrossRefPubMedGoogle Scholar
  601. Zern RT, Bird JL, Feldman JM (1980) Effect of increased pancreatic islet norepinephrine, dopamine and serotonin concentration on insulin secretion in the golden hamste.R Diabetologia 18:341-346Google Scholar
  602. Zhang Z, Chen K (2016) Vasoactive agents for the treatment of sepsis. Ann Transl Med 4:333  https://doi.org/10.21037/atm.2016.08.58
  603. Zhang L, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuro-Psychopharmacol Biol Psychiatry 30:1381–1393.  https://doi.org/10.1016/j.pnpbp.2006.05.015 CrossRefGoogle Scholar
  604. Zhang Y, Picetti R, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2009) Behavioral and neurochemical changes induced by oxycodone differ between adolescent and adult mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34:912–922.  https://doi.org/10.1038/npp.2008.134 CrossRefGoogle Scholar
  605. Zhang MZ, Yao B, Wang S, Fan X, Wu G, Yang H, Yin H, Yang S, Harris RC (2011a) Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice. J Clin Invest 121:2845–2854.  https://doi.org/10.1172/jci57324 CrossRefPubMedPubMedCentralGoogle Scholar
  606. Zhang W, Chancey AL, Tzeng HP, Zhou Z, Lavine KJ, Gao F, Sivasubramanian N, Barger PM, Mann DL (2011b) The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124:2106–2116.  https://doi.org/10.1161/CIRCULATIONAHA.111.052399 CrossRefPubMedPubMedCentralGoogle Scholar
  607. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W (2012) Bone marrow and the control of immunity. Cellular & molecular immunology 9:11–19.  https://doi.org/10.1038/cmi.2011.47 CrossRefGoogle Scholar
  608. Zhou Z, Misler S (1995) Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proc Natl Acad Sci U S A 92:6938–6942CrossRefPubMedPubMedCentralGoogle Scholar
  609. Zhu Z, Spicer EG, Gavini CK, Goudjo-Ako AJ, Novak CM, Shi H (2014) Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation). Physiol Behav 125:21–29.  https://doi.org/10.1016/j.physbeh.2013.11.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations